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Abstract

We discuss the implications of the incompressibility approximation on the num-
ber of relevant transport parameters, like viscosities, flow alignment coefficients, and
rotational viscosities in uniaxial and biaxial nematic liquid crystals. A comparison
between the hydrodynamic and the Leslie-Ericksen approach is given. Agreement is
found, if in the latter description a redefinition of the pressure is assumed. For sys-
tems with positional order, like smectic and columnar liquid crystals and crystals,
we show that, generally, incompressibility does not imply that the displacement field
is source-free.

PACS: 05.70.Ln, 46.05.4+b, 83.10.-y

1 Introduction and Results

The dynamic description of uniaxial nematic liquid crystals has been pioneered by Er-
icksen [1-3] and Leslie [4,5]. Starting from a continuum-mechanics description of con-
servation laws a very general set of additional constitutive equations is given for a wide
range of different materials. With further specifications and assumptions (including in-
compressibility) these equations are then adjusted for the case of uniaxial nematics. They
have been proven to be rather successful in describing experiments. Treatments using the
alignment (or anisotropy or order parameter) tensor instead of the director followed [6].
In the same spirit approaches using Poisson brackets to derive the reversible [7] and the
dissipative part [8] of the dynamics have been pursued. A Leslie-Ericksen type theory for
biaxial nematics can be found in [9]. For nematic polymers similar equations have been
derived [10] starting from a microscopic model. There are no Leslie-Ericksen type theories
describing the elastic degrees of freedom in smectic, columnar or crystal systems.
Another approach has been introduced in [11], where the notion of spontaneously
broken continuous symmetries is used. Since every such broken symmetry gives rise



to a hydrodynamic mode (in the absence of unscreened long-ranged forces), the exact
number and the correct nature of the relevant variables is obtained. Thermodynamics
and symmetry considerations then lead to the dynamic equations without any additional
assumptions. This method (cf. ref. [12] for a detailed exposition) is applicable to systems
with spontaneously broken continuous symmetries of any kind (e.g. biaxial nematics [13,
14]) including strong external fields [15] and can be generalized to systems with slow non-
hydrodynamic variables (like nematic polymers [16]). These theories describe generally the
compressible case and the incompressibility approximation can be implemented explicitly,
in order to compare with the Leslie-Ericksen approach. Agreement, at least with respect
to the number of material parameters involved, has been found [17] for uniaxial nematics
rather early. Here we give a detailed discussion how incompressibility has to be established
in uniaxial and biaxial systems as well as in systems with elastic degrees of freedom.

We start with the well-known example of simple liquids, where incompressibility is
easy to implement. We carry over this procedure straightforwardly to uniaxial nematics.
Comparison with the Leslie-Ericksen equations shows that agreement is obtained only, if
in the latter approach the pressure is identified not with the usual thermostatic pressure,
but with a redefined one that contains contributions from the actual flow field. A similar
discussion is provided for the biaxial case. Here, explicit formulas for the material tensors
(like viscosity, flow alignment, and rotational viscosity tensor) are given, not only for
orthorhombic symmetry, but also for mono- and triclinic, as well as tetragonal, hexagonal
and cubic symmetries, most of which have never been shown before. Again, comparison
with appropriate Leslie-Ericksen type theories (when available) shows that agreement
implies the redefinition of the pressure in the latter case, while without such a pressure
redefinition the number of viscosities is considerably larger in the hydrodynamic case.
Quite generally, the degree of simplification that is reached by assuming incompressibility
diminishes drastically for the more complicated systems (of rather low symmetry).

In the last section we deal with elastic degree(s) of freedom in smectic, discotic and
crystal systems, which describe layer compression (or dilation), lattice compression and
in-plane shear of the column lattice, and ordinary elasticity, respectively. In the smectic
and columnar phases incompressibility does neither affect the displacement field, which
describes elasticity, nor its dynamic equation. Thus, the assumption of constant layer
spacing in smectics is an additional approximation, which is completely unrelated and
independent of incompressibility, and leads to additional constraints on the flow field
well beyond the incompressibility approximation. In crystals incompressibility implies
the divergence of the displacement field to be zero (source-free) only in the isotropic
case (disordered solids), while for all crystal symmetries a special compatibility condition
involving the displacement field and its time derivative is obtained. Only if, additionally,
vacancy diffusion is neglected, incompressibility requires a source-free displacement field.

2 Simple Fluids

As a pedagogical example we start with a discussion of incompressibility in simple liquids.
Omitting the thermal degree of freedom for simplicity, isotropic Newtonian fluids are
described by the dynamic equations for the mass density p and the velocity v;

p+Vipv; = 0 (1)
p(fvz + Ujvjvi> + Vzp + VjO'ij =0 (2)
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which represent mass and momentum conservation. A dot means partial derivation with
respect to time and V; is the spatial gradient. The thermodynamic pressure p is defined as
p = —dF/dV with V the volume and F' the total energy of the system. In the Newtonian
limit the stress tensor o;; reads

1
05 = —QI/(AZ‘j — géz]Akk) — C(SZjAkk‘ (3)

with 24;; = V,u; + V,v,. There are 2 transport parameters, v the shear and ¢ the
compressional viscosity. Changes of the pressure are related to density changes by the
(linear) static relation
6p=c2ép (4)

with ¢, the sound velocity. For simplicity the material parameters v, ( and ¢, will be
treated as constants.

If we linearize around a state of constant density (py) and zero velocity, the bulk
dynamics egs.(1-3) can be decomposed

p+ podive = 0 (5)

4
po divd + Ap — (¢ + §1/)Adivv =0 (6)
pocurlo — v Acurlv = 0 (7)

into a longitudinal (p and divv) and a transverse part (curlv) describing sound waves and
vorticity diffusion, respectively (A = V?2 is the Laplacian). It should be noted that this
splitting of the dynamics into two separate parts is peculiar for simple, isotropic liquids
and does generally not hold for more complicated systems like liquid crystals.

It is now easy to see how the incompressibility condition can be invoked: The density
remains constant for all times, if p = 0, which immediately leads to the familiar condition
divv = 0. This is compatible with eq.(6) only if

Ap=0 (8)

This condition replaces the static relation (4), since changes of p are zero, i.e. p is no
longer a variable. Of course, the pressure can vary in space and time even under the
assumption of incompressibility (provided (8) holds). This fact is reconciled with eq.(4)
by the formal requirement ¢y — oo, because then c3dp is undefined, eq. (4) is void, and
the pressure follows from (8). This is the reason why incompressibility is assumed to be
a good approximation for flows with velocities well below the sound velocity.

Since the incompressibility condition only affects the longitudinal part of the dynamics,
the remaining transverse dynamics (7) is unchanged. It contains only the shear viscosity v
as material parameter. The compressional viscosity ¢ has dropped out automatically and
it does not matter whether it is small or large compared to v. The true approximation
that is related to ’incompressibility’ is ¢g — co. In addition, the boundary conditions at
free surfaces also do not contain (. There, normal stresses p + N;N; joi; are balanced by
surface tension while shear stresses PZNJUW are zero (N, and H are unit vectors normal
and parallel to the surface, respectively).

This picture is basically unchanged also in the nonlinear case. Assuming the density
to be constant in time and space we get divv = 0. The compatibility condition for the
pressure (8) is more complicated in the nonlinear case

Ap = —pV,V,v0; (9)
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but again ¢ drops out and ¢y — oo is the relevant approximation.

3 Compressible Uniaxial Nematics

Uniaxial nematic liquid crystals differ from simple liquids not only by their lower sym-
metry due to the preferred direction (denoted by the director 72), but also by additional
hydrodynamic degrees of freedom, rotations of n. Their full hydrodynamic equations are
well known [11] and can be written as (for more details and a derivation of the equations
see [12])

1 1
hi + vjani — iAijkvjvk ‘f‘ ’75ihk = O (10)
1

where the flow alignment tensor

)

contains the director reorientations due to rotational flow (antisymmetric part) and due
to elongational flow (symmetric part with the reactive material parameter A that controls
flow alignment of the director e.g. in shear flows). The transverse Kronecker tensor
51# = 0;; — n;n; guarantees n® = 1 for all times. The dissipative material parameter 7,
(sometimes called orientational viscosity) governs the orientation diffusion (or relaxation
if an external field is present) of the director, since
) :
hi = %F(n) with 2F(n) = /dV (Kmkl(vjn,)(vlnk) - ea(n . E)2) (12)
(2

where the director-dependent part of the total energy F™ contains the Frank orientational
elastic energy [17] (with 3 coefficients K 93) as well as the dielectric anisotropy energy
(~ €,) due to an external electric field E, which we will assume to be constant in the
following.

The form of the continuity (1) and the Navier-Stokes equation (2) remains unchanged,
however the stress tensor is more complicated

1
0ij = —VijAr — 5)\k:jihk + Kyjiu(Ving)(Ving) (13)

since it contains not only viscous effects (1) but also 'back flow’ (changes in the flow
due to director reorientation) governed by the flow alignment tensor; in addition there is
the nonlinear so-called Ericksen stress. Note that the flow alignment and the back flow
effect come with the same material parameter ensuring that they cancel each other in the
entropy production, which is required by their (time) reversible character. The viscosity
tensor reflects the uniaxial symmetry of nematics and reads in the notation of [19]

Vijkl = U9 <5j15ik + 5ilfsjk) + 2(1/1 + Vo — 21/3) nmjnknl + (1/5 — Uy + Vg)(éijnknl + 5kmm]~)
—|—(I/4 — VQ) 5ij5kl + (Vg — 1/2)(77,]'7115ik + njnkdil + nmk&jl + nmléjk) (14)

containing 5 independent viscosity parameters. Pressure variations are also slightly more
complicated in nematics compared to simple fluids and given by

Vip = pvlu -+ O'VlT + pUjVivj — thinj (15)
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relating the pressure to the chemical potential yu, to the temperature T' (thermodynam-
ically conjugate to the entropy density o), to flow (in a nonlinear fashion) and to the
director degrees of freedom.

For the thermal degree of freedom we need a dynamical equation (for other possible
macroscopic degrees of freedom, like concentration in lyotropic systems, order parameter
fluctuations in polymeric systems and charge density in conducting systems see [12]), e.g.
in the form of an entropy balance equation

b+ Vi) — V(s V.T) = (16)
where the source term R is the entropy production, which is zero for reversible processes
(where the entropy is conserved) and positive for dissipative ones (second law of ther-
modynamics). In our case the dissipative processes are viscosity, director diffusion (or
relaxation in the presence of an external electric field) and heat conduction, the latter
expressed in (16) by the heat conduction tensor x;; = R|nin; + K Lc%. This gives rise to
the entropy production

2R = '71_15ijhihj + VijklAijAkl + Rij (VZT) (V]T) (17)

which is bilinear in the thermodynamic forces (and thus also in the dynamic variables)
and contains 8 dissipative material parameters. For the conditions on these parameters
to guarantee positivity of R we refer to [12]. Using the entropy production R as potential
to derive the dissipative parts of the currents (and R = 0 for the reversible ones) au-
tomatically guarantees all possible Onsager relations. Together with the flow alignment
parameter A this makes 9 transport parameters in total, one of which (\) is reactive (and
not restricted in its value by thermodynamics).

To close the system of hydrodynamic equations we have to express the conjugate
variables T and g by the dynamic ones (p and o); since all quantities are scalars these
relations are identical to those in simple fluids

T 1
0T = — 1
o do + o dp (18)
1 1
op = ——dp+ oo (19)
pPhs pars

and follow from a free energy density 2fy = T'C,* (60)% + p~2k1(6p)? + 2pLa; H(0p)(00)
containing 3 static susceptibilities, the adiabatic compressibility x,, the specific heat at
constant density C'y, and the adiabatic volume expansion coefficient a,. Together with
the 3 Frank orientational elastic constants this makes 6 static susceptibilities in total (in
the absence of external fields). Using the Gibbs-Duhem equation (15) the pressure can
be expressed by the variables and the system of dynamic equations is closed. Solving for
sound waves the sound velocity is found to be pc2 = 1/ks + 20/as + 0*T/Cy =~ 1/k,.

4 Incompressible Uniaxial Nematics

Incompressibility means that the density is constant in time and space. Thus, p is elim-
inated as hydrodynamic variable and does not occur in the free energy density f =



f({variables}) anymore. Therefore, the chemical potential = 0f/0p is not defined and
eq.(18) is replaced by
T
0 =—9¢ 20
oo (20)
or 2fy = TC,*(60)?, which can be reconciled with the compressible case by the formal
limit of zero compressibility ks — 0 and zero volume expansion oy — 0. Since there are
no volume changes, the Gibbs-Duhem relation (15) does not exist.
Of course, mass conservation still holds and eq.(1) has to be fulfilled, which requires
divv = 0 everywhere and for all times. This in turn is guaranteed by the conditions

1
Ap = —pV,; V005 + ViV Vi A + vivj§)\kjihkz — ViV Kyiu(Ving)(Ving) — (21)
or linearized

Ap = AnVidivh + (2v3 — o — vy + v5) nyn; V;;Avy,
+2(V1 + vy —2 1/3) ninjnknlvivjvk U (22)
which are the nematic analogue to (8) and (9).

The momentum balance equation (2) is somewhat simplified by the incompressibility
condition divv = 0 and reads in linearized form

1
pl)z + Vip — §vj)\kﬂhk — VQAUZ' — 2(1/1 + 1y — 2V3)nmjnknlvjvkvl
—(vs — va + )V, Vi, — (v3 — o) (i Avg, + nymy Vi Viv;) = 0 (23)

while the form of the director rotation equation (10) is unchanged. The linearized bound-
ary conditions for free boundaries can be written as

PZ'NJ' < I/Q(Vﬂ)j + Vjvl-) + (1/3 — VQ)(TLJ'TL[VZ‘U[ + njanlvi -+ nmivjvl + nlnivlvj)

1
+§)\kjihk> =0 (24)

and
NiNj <5¢jp - QI/QVﬂJj - 2(V1 + vy — 2V3)nmjnknlvkvl - 5ij(V5 — V4 + VQ)nknlkal

1
—(Vg — yg)(njmvivl -+ njnlvlvl- + nlniVle + nmivlvj) + §Akahk) =C (25)

where N; and P; are unit vectors, normal and parallel to the surface, respectively, and C' is
the curvature stress due to surface tension. Eqgs.(21-25) still contain 4 linear combinations
out of the 5 viscosities of uniaxial nematics. This number can be further reduced by
redefining the pressure

p/ =p— (I/5 — Uy + yg)nknlvkvl (26)

eliminating the combination vs — vy 4+ 15 from the system of dynamic equations. Only
3 combinations of viscosities, which involve v 93 only, are left. Together with ~; from
the director equation there are 5 transport parameters (one of which (\) is reactive)
and 4 static susceptibilities (K23 and Cy) remaining. Of course, this reduction to 3
relevant viscosity combinations is obtained for the prize that p’ has no simple physical
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meaning. It could be argued that in the true incompressible limit pressure is not defined
anyhow and cannot be measured statically. In that case p or p’ are dummy variables
that can be eliminated completely from the set of equations. However, incompressibility
is an approximation, often used to simplify the description of flows, and appropriate for
velocities well below the sound velocity and for situations, where the thermal expansion
is negligible. In most situations where this approximation is used, the pressure p can still
be interpreted and measured as the hydrostatic pressure. Then, of course, the difference
p — p/ matters.

In isotropic liquids such a redefinition of the pressure is neither appropriate nor nec-
essary, since there the dynamics comes in two separate parts and the pressure does not
occur in that part, which is relevant for the incompressible case. Such a separation into
a longitudinal part (p and divv) and a transverse part (curlv) is not possible in liquid
crystal phases nor in anisotropic crystals [18].

There have been different procedures in the literature to reduce the full compressible
dynamics to the incompressible case. A common trick is to give special values to some
of the viscosities, such that, e.g. no divv terms are left in the stress tensor (and thus in
the boundary conditions). This leads to [17,19] v» = v4 and v5; = 0. These are purely
formal relations, which generally have no correspondence to reality (for isotropic fluids this
procedure would give ( = 2r/3, which again is far off the experimental values). Worse,
they do not eliminate divv from the dynamics, i.e. from V;o;;. For that case different
conditions, vy, = 0 and v3 + v5 = 0 are necessary (for isotropic fluids the corresponding
relation would be ¢ = —r/3, which would violate the second law of thermodynamics).
But these conditions do not guarantee divv = 0 for all times. To get this v5 = vy + 14,
V1 + vy = v, and even A = 0 have been proposed [20], in which case eq.(21) reduces to
Ap = 0. Obviously neither of these attempts can completely eliminate divv from the
whole set of equations and the proper procedure is that described above.

Historically the first to derive dynamical equations for incompressible uniaxial nemat-
ics were Ericksen [1-3] and Leslie [4,5]. From a rather large set of dynamic equations,
which contains several non-hydrodynamic variables, they distill equations that can be
compared with the hydrodynamic ones. The dynamic equation for the director is thereby
formulated as a balance of torques acting on the director. Their equations are compatible
with (10) and (23), if one interprets their pressure as the redefined pressure (26). In
that case the 5 ’viscosities’ a5 (a sixth one is dependent due to an Onsager relation

ag = a5 + a3 + ap) introduced in their theory can be related to the transport coefficients
used here by [12,17]

a; = 2w +ve—2u3) — 'yl)\Q
200 = —m(1+ )
205 = m(l—=X)
oy = 214
205 = 4(vs—1a) +mAA+1) (27)

which in turn shows that the reactive parameter A = (ay + a3) /(s — a3) is expressed as
the ratio of dissipative ones.



5 Biaxial Nematics

Biaxial nematic liquid crystals are characterized by the existence of two different directors
n and m (defining a third one, p ~ n x m). A nonlinear hydrodynamic description
has been given in (the second part of) [13] and in [14], while a Leslie-Ericksen type
treatment can be found in [9]. If the two directors are orthogonal (oblique), the phase is
of orthorhombic Dy, (monoclinic Cy,) symmetry. In the case that two (all three) of the
directors are equivalent, i.e. if there is a n < m (n < m < p < n) symmetry, the
symmetry is raised to tetragonal Dy, (cubic Op). If there are 3 different directors, neither
of which is orthogonal to any of the others, the lowest symmetry, triclinic C; is obtained,
where only a center of inversion exists.

Table 1: This table shows for different systems the number of viscosities in the compressible
(Veomp) and in the incompressible case, without (v,.) and with (1,) redefining the pressure.
In addition the number of reactive flow alignment parameters in the compressible (Acomp) and
the incompressible case (\jnc), as well as the director orientational viscosities () is listed. The
columns v, Aipe, and v add up to the number of Leslie-Ericksen parameters (LE).

symmetry Veomp | Vine Vp ~ Acomp | Aine | LE
isotropic 2 1 1 - - - -
uniaxial /hexagonal 5 4 3 1 1 1 5
biaxial orthorhombic 9 8 6 3 3 3 12
biaxial monoclinic 13 12 9 4 8 7 20
biaxial triclinic 21 20 15 6 18 15 (36)
biaxial tetragonal 6 5 4 2 1 1 (7)
biaxial cubic 3 2 2 1 (3)

In the compressible case the viscosity tensor has the same symmetry properties, and
thus the same form as, the elastic tensor. The number of independent viscosity coefficients
can therefore be read off textbooks [21] and are found to be 21, 13, 9, 6, and 3 for triclinic,
monoclinic, orthorhombic, tetragonal (Dy;), and cubic symmetry, respectively (Table
(1)). For the most important orthorhombic case the viscosity tensor has the form [13]
(p=mnxm)

(ortho)
Viiki = vymymymemy + Vannngny + vspipipepr + Va (mimyning 4+ mymingng)

+vs (memupip; + mampepr) + Ve (kmupip;y + nin;prpr)

+v7 (mymyning + mymgngng -+ mymgn,ng -+ mmgnng)

+vs (mjmup;px + mymepip; + mimip;pr+ mimup;p)

+vy (njmpipk + ngngpipr + ningpipr + niup;pr) (28)



For the mono- and triclinic case additional terms are present

(mono) (ortho)
Viiki = Vim T vio(mimgmyny + mymgmyng, + mpmygmgn; 4+ mymym;n;)

vy (ningngmy + nangngmy + ngngngm; 4+ ngngngm;)
+v12(pipymeny + pipjrung + pepiming + prpim;n;)
+v13(Piprmny + PP 4+ pipimn + pipmny,
+PiprIUN; + PIpimny; + Prpyun; + pipimgn;) (29)

and

(tric) (mono)
Vil = Viju T via(mymgmypr + myammupy + mmymgp; 4+ mymym;p;)

+uv15(ningngp + ningmupr + nEnngp; + ngngmn;p;)
+v16(pipjprmu + Pipjpink + DEPIDin + PEPID )
+v17(pipjpey + PipsPIME + PRPIPIM + DRI
+v1s(mymprny + mamgpng + mynyuping + mEmgp;ng)
Fv19(nanpemy + nangpimy, + npnpimyg + ngngpm;)
+vo0 (Mimepsng + mymgping + mymyping + mgnypiny,
+mymupimng + mympng + mpmpim; + mymypen;)
Vo1 Rk + NP + NPy + TP,

+nngpim; + nppm; + npngpim; + ngngprm;) (30)

where in (29) p = (n x m)(1 — (n-m)?)~/2, while in (30) p has to be an independent
additional director.

For the tetragonal and cubic case some of the viscosities in (28) have to be equal, i.e.
V) = Uy, Us = g, Vg = Vg and V| = Uy = U3, Uy = U5 = Vg, V7 = Uy = Uy, Tespectively.

In the incompressible case the number of relevant viscosities is smaller. It is easy to
see that there is exactly one (and only one) compressional viscosity irrespective of the
symmetry of the phase: connecting two scalar quantities, the pressure p with divv, it has
to be a scalar, too. Thus, strictly speaking, the number of viscosities in the incompressible
case is lowered just by one compared to the compressible case (Table (1)). In (28) a linear
combination of the first 6 terms (77 + 1o + T3 + Ty + T5 + T§) gives the compressional
contribution ~ ¢;;0;, which, in the incompressible limit, drops out automatically from
the free boundary conditions, from the dynamics (including v, VA ), and from the
compatibility condition for Ap (containing v, V;V;Aw).

There are terms in the viscosity tensor that are partially related to divv. They have
the form §;; (7 — %5klﬂqq) + O (D35 — %&jﬁqq), where the first part does not vanish in the
incompressible limit. They can be incorporated into the pressure, if the latter is redefined
as p = p+ v Ay sacrificing the simple physical meaning of the pressure. According to the
symmetries involved there are between zero (in the isotropic and cubic case) and 5 terms
(in the triclinic case) of this kind, reducing the number of apparent viscosities further
(Table (1)). In (28) the two combinations 277 + Ty + Ty and 275 + Ty + Ty give rise to such
viscosity contributions, while in (29) there is one additional combination Tjg + T11 + T2
of that kind and 2 more in (30), Ty4 + T17 + Ti9 and T15 + T16 + Tis-

The director orientational viscosities (7 coefficients) are not affected by the incom-
pressibility assumption. There are 3 of them [13] in orthorhombic biaxial nematics ac-
cording to the three different rotations involved. For other symmetries their numbers are
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listed in Table 1 (in agreement with [14] for the tetragonal and cubic case). The (reac-
tive) flow alignment tensors, on the other hand, are influenced by the incompressibility
approximation. Writing the rotations due to elongational flow as [13]

ANyl = A A o)
the conditions n;n; = 0 = mym,; and n;m; = const. require the general form of the

A-tensors to be

AE = madl i,
A= —nd o+ Xy (32)

For orthorhombic symmetry we have 3 coefficients [13] (in Voigt notation)

)\il],‘ortho )\16 (nimj + njml-)
NGO = Ngs (nap; + i)
)\?],‘ortho A3y (pimj + pjmi) (33)

with additional terms in the monoclinic

)\il],‘mono = )\Z}J,'ortho + )\nnmj + )\12mim]’ + )\13pipj
/\Zgjzmono )\?Jzortho + /\24(mipj + m]pz)
)\?J’.mono = )\?]’-Ortho + Ass(pin; + pjni) (34)

and triclinic case

)‘ij'mc = Aijmom + Ais(nip; + nypi) + Aa(mpy 4+ m;p;)

)\?jtric = )\?jmono + )\aninj + )\ngimj + )\Qgpipj + )\26<nim]’ + lemi)

)\?jtric = )\?jmono + )\3171,‘71]‘ + Aggmimj + )\33pipj + )\36(7’Limj + njmi) (35)

adding up to 3,8, and 18 \ coefficients for the 3 symmetries, respectively. It is easy to see
that one term ~ &;; can be constructed each in A", AL, and AJ"™, thus reducing
the numbers of relevant incompressible A parameters by 1 and 3 for the monoclinic and
triclinic case, respectively (see Table 1) in the incompressible limit.

In the Leslie-Ericksen type description of orthorhombic biaxial nematics 12 (dissipa-
tive) transport parameters are found [9] (in the incompressible and isothermal limit). This
corresponds to the sum of v and A parameters and viscosities v, and, thus, implies that
the pressure in [9] is actually the redefined one, p. Again the (three) reactive parameters
A are expressed by ratios of dissipative ones. For a Leslie-Ericksen type description of the
monoclinic biaxial nematics we can take [22], which was originally intended to describe
smectic C liquid crystals with constant layer thickness, i.e. without the compressional
mode. However, since 3 different and independent angles are used as dynamic variables,
this is applicable to biaxial nematics with monoclinic symmetry, while the smectic C phase
has one angle (in-plane rotation of the director structure) and one displacement variable
(for layer compression or dilation), from which the two rotation angles of the layer normal
are derived (and which are thus not independent) [23]. In [22] 20 transport parameters
are found, which again fits nicely with the sum of v and \;,. parameters and viscosities
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v, and, again, implies that the pressure is actually the redefined one, p. We are not aware
of actual Leslie-Ericksen type descriptions of biaxial nematics of triclinic, tetragonal, and
cubic symmetry. But we expect the same correspondence to hold between Leslie-Ericksen
parameters and hydrodynamic ones as discussed above, and have given the corresponding
numbers in Table 1 in parentheses. Obviously, the degree of simplification that is obtained
by the incompressibility approximation decreases rapidly with increasing complexity (or
decreasing symmetry) of the phase considered.

6 Smectic, Columnar and Crystal Phases

We will briefly discuss the notion and consequences of incompressibility in phases with
positional order or elasticity. Smectic or layered systems have a one-dimensional, colum-
nar phases a two-dimensional, and crystals a three-dimensional positional order. This
constitutes spontaneously broken translational symmetries and the appropriate hydrody-
namic symmetry variables are 1-, 2- and 3-dimensional displacement variables uga) (for
complications in the nonlinear theory cf. [23-25] ), with a = 1,2, 3 for smectics, colum-
nar phases and crystals, respectively. They are related to the displacement vector u; by
ugl) = kikjuj, ul@) = (n;n; +m;m;)u; and ugg) = u,;, where k; is the normal to the smectic
layers, and n;, m; are the preferred directions of the 2D lattice of the columns. Only
where necessary we will discriminate between smectic A (Do, symmetry) and smectic C
(Cap), and between orthorhombic (Day,), tetragonal (Dyy) and hexagonal (Dgp,) columnar
phases.
The linearized dynamic equation for the elastic degree of freedom can be written
[11,13,17] (neglecting a dissipative crosscoupling to temperature gradients)
i = o = Ve (36)

(2 K3

where UZ-(Q) is related to the velocity v; in the same way as uga) to u;. It should be noted that
in the Eulerian description u; is not the position vector of a particle and therefore its time
derivative is not identical to the velocity (of a particle). The difference between the time
derivative of the displacement field and the velocity field is due to a dissipative process
known as permeation in smectics and columnar phases and called vacancy diffusion in
solids [11]. The permeation tensor &; = &k;k; has one coefficient in smectic systems,
generally two &; = {imin; + &amymy; in columnar systems (with & = & for tetragonal
and hexagonal symmetry) and 1 to 6 coefficients (like the dielectric tensor) in crystals
depending on their symmetry. The elastic stress gng) follows from the free energy F' by
differentiation SF

o = s = Tl K,
containing Hooke’s law as well as curvature effects. In smectics there is only a 1-
dimensional compression or dilation cg;;, = Bokik;kik;, while in columnar phases also
in-plane shear stresses are possible [13]

Vi ViVu® (37)

(2 _
Cijki =  C1NiM;ngmy + comymmpm; + 04(nmjmkml + nknlmimj)

+cg(ningmymy + ninymgmy + ngngmgmy + ngngmgmy) (38)
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with ¢; = ¢y for the tetragonal, and, additionally, c3 = ¢; — ¢4 for the hexagonal, case.
For crystals cgj.’,ll = ;i 1s the usual elastic tensor. For the latter case curvature effects
are almost always neglected, while for smectics

K

ijklmn

= kikn (856 — kjk) (K1 (Oim — kikm) + Kskiky,) (39)

there is layer bend (= director splay) and layer splay (= director bend) expressed by K
and K3, respectively. For the columnar case we refer to [26].

Incompressibility again means constant density in time and space resulting in divo = 0
and is obtained for vanishing compressibility and thermal expansion. The compatibility
condition for the pressure, which ensures divv = 0 for all times, now involves the elastic
stresses

Ap = VZVJQSS‘) + uijleiVjAkl (40)

The consequences of incompressibility for the viscosity tensor depend on the symmetry
of the phases under consideration and has been discussed in the previous sections.

In the smectic and columnar case there are no effects due to incompressibility for the
displacement field ugl’Q) nor for its time derivative u§1’2). Here divv = 0 does neither imply
divv? = 0 (nor dive™® = 0), but rather that these (1D or 2D compressional) flows
are compensated by transverse (dilational) flows, since Vivi(l’z) = —(5;5;1’2Vivj # 0 with
53’1 = 0;; — k;k; and (5;?;72 = d;; — n;n; — m;m;. In smectics sometimes the assumption
of constant layer spacing (”layer incompressibility”) is made, which then allows only
curvature of the layers. This has nothing to do with the incompressibility condition
divv = 0, but is obtained by the additional assumption of an infinite layer-compression
modulus, By — oo, which implies (k- V)"u") = 0 for n > 1. This in turn restricts
the velocity field in (36) to obey V,-vgl) = k;k;V,;v; = 0. This condition is difficult
to implement in actual problems and makes treatments with By — oo rather dubious.
Similar considerations apply to columnar phases.

Somewhat different is the case of crystals. Here divv = 0 requires the compatibility
condition via (36)

Vit = &§ijCikim Vi Vi Vi, (41)

showing that divu # 0, generally. Only if vacancy diffusion is neglected additionally,
&j; = 0, divu = 0 is obtained. That additional assumption is inherent to all continuum
theoretical treatments based on the Lagrangian approach, where divu = —dp/p [18],
which gives divu = 0 in the incompressible limit. If vacancy diffusion is not neglected,
divu = 0 is a solution of (41) in the isotropic case (disordered solids), only. In that case
the bulk elastic modulus drops out automatically from the elastic stress ¢;; and thus also
from the dynamics. However, even for the simplest crystal symmetry, the cubic one (and
of course for all more complicated ones), divu = 0 is not a solution of (41) and all three
(or more) elastic moduli remain relevant despite the incompressibility assumption.
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