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NON-NEWTONIAN CONSTITUTIVE EQUATIONS USING
THE ORIENTATIONAL ORDER PARAMETER

HARALD PLEINER*, MARIO LIUf, AND HELMUT R. BRAND?

Abstract. Nonlinear hydrodynamic equations for non-Newtonian fluids are dis-
cussed. We start from the recently derived hydrodynamic-like nonlinear description of a
slowly relaxing orientational order parameter tensor. The reversible quadratic nonlinear-
ities in this tensor’s dynamics are material dependent due to the generalized nonlinear
flow alignment effect that comes in addition to the material independent corotational
convected derivative. In the entropy production these terms are balanced by linear and
nonlinear orientational-elastic contributions to the stress tensor. These can be used to
get a nonlinear dynamic equation for the stress tensor (sometimes called constitutive
equation) in terms of a power series in the variables. A comparison with existing phe-
nomenological models is given. In particular we discuss how these ad-hoc models fit into
the hydrodynamic description and where the various non-Newtonian contributions are
coming from. We also discuss the connection to the hydrodynamic-like description of
non-Newtonian effects that employs a relaxing strain tensor.

Key words. Constitutive equations, orientational order parameter, non-Newtonian
effects, hydrodynamics, flow alignment, relaxing strain tensor.
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1. Introduction. Hydrodynamics is a well established field to de-
scribe macroscopically simple fluids by means of the Navier-Stokes, con-
tinuity, and heat conduction equations. However, it applies also to more
complex fluids that are fully characterized by conservation laws and broken
symmetries. It is based on (the Gibbsian formulation of) thermodynam-
ics [1,2], symmetries and well-founded physical principles [3]. A detailed
description of this method can be found in [4,5]. This method can be gener-
alized to include slowly relaxing variables that are relevant on experimental
macroscopic time scales albeit being non-hydrodynamic. Examples are the
soft mode near phase transitions [6, 7], the magnetic degree of freedom in
ferrofluids [8,9] and the relative velocity in 2-fluid descriptions [10]. The
derivation of such macroscopic nonlinear dynamic equations is still based
on first principles, making use of thermostatics, linear irreversible thermo-
dynamics, symmetries and broken symmetries, and invariance principles.
Only the choice of the slowly varying variable is heuristic and material
dependent. In that sense non-Newtonian fluids are non-universal.

On the other hand, a host of different empirical models have been
proposed [11-17] to cope with the rheology of such substances. Typically
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these models are formulated as generalizations of the linear, Newtonian
relation between stress and deformational flow allowing for additional time
derivatives and nonlinearities. They are tailored to accommodate empiri-
cal findings or are based on principles [15] that are ad-hoc and generally
insufficient.

Quite recently we have derived a nonlinear hydrodynamic description
of elastic media [18,19] that has been confirmed within the GENERIC
formalism [20]. Allowing in this hydrodynamic description the strains to
relax (and not only to diffuse) a generalized hydrodynamic description of
nonlinear viscoelasticity is obtained in terms of a dynamic equation for
the (Eulerian) strain tensor [18,19]. This strain tensor description can
be transformed approximately into one that uses a dynamic equation for
the stress tensor [21] and can thus be directly compared with many of
the empirical models proposed to describe non-Newtonian rheology. The
comparison reveals possible inconsistencies and connects the various ad-
hoc additions of those models with physical relevant processes, like strain
relaxation, elasticity and viscosity [21].

In this communication we use a different approach that relates non-
Newtonian behavior to fluctuating, transient, and slowly relaxing orien-
tational order. This has been used e.g. for describing the dynamics of
semiflexible polymers, where long-lived polymer alignments and entangle-
ments lead to viscoelastic effects [22]. The relaxational dynamics of the
orientational order parameter tensor has been used in the isotropic phase
of low molecular weight nematogens [23] describing orientational fluctu-
ations that become important as pre-transitional effects near the phase
transition. The relaxational (and non relaxational) dynamics of the orien-
tational tensor has been derived and rederived pretty often [24-29]. Here,
we will rely on the hydrodynamic description [30] that e.g. makes the
clear distinction between reversible and irreversible processes and avoids
any detours via additional auxiliary and unphysical dynamic variables. In
Sec.2 orientational elasticity and the phenomenological material tensors
describing reversible and irreversible transport (flow alignment, viscosity,
and relaxation) that are part of the hydrodynamic description are given as
an expansion in powers of the orientational tensor. The back-flow effect in
the stress tensor (Sec.3), which is required for thermodynamic reasons, as
well as the part of the viscosity that depends on the orientational tensor
provide a coupling between the stress and the orientational tensor. This
can be used to generate a dynamic equation for the stress tensor from that
of the orientational tensor (Sec.4). This translation is achieved by a power
series expansion in the variables and can be done only approximately, since,
generally, nonlinear equations cannot be inverted analytically. The power
series is truncated after the quadratic order, since most of the phenomeno-
logical constitutive models, which we compare with in Sec.5, are of that
form. A summary (Sec.6) of the main results concludes the paper.
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2. Dynamics of the orientational order parameter tensor. The
transient orientational order is described by a symmetric, traceles second
rank tensor Q;; (Qi; = @;; and Q;; = 0). In contrast to the case of a
nematic phase with spontaneous and permanent orientational order, there
is no nematic order in equilibrium and a director does not exist. The
relaxational dynamics of Q;; can be written as [30]

Qij + v ViQij + QirQ%i + QixQj — NijriArt = —ijritm (2.1)

with 24;; = Vjv; + Vv and 2Q;; = Vjv; — Vv, the symmetric and an-
tisymmetric velocity gradients characterizing deformational and rotational

flow, respectively. The orientational elastic stress tensor y; is defined by
the Gibbs relation [4]

de — T'do = vidg; + 1i;dQq5 + pdp. (2.2)

as the conjugate to Q;;. It has to be taken as symmetric and traceless,
since only that part enters the Gibbs relation and has a physical meaning.
The Gibbs relation contains all the other variables (density p, momentum
density g;, energy density ¢ or entropy density o) and defines their con-
jugates (temperature T, velocity v;, and chemical potential u), where the
latter are related to the more familiar (thermodynamic) pressure p by the
Gibbs-Duhem equation

dp = odT + g;dv; — wideij + pdu (23)

In Eq.(2.1) the nonlinear reversible coupling terms to flow are a priori
of the corotational or Jaumann derivative type (containing only €2;; the
rotational flow — suitably for the orientational order involved), but there is
in addition a phenomenological reversible coupling to symmetric velocity
gradients that makes the effective convective derivative material dependent
[30]. The phenomenological material tensor \;;x; (a kind of generalized flow
alignment tensor) is given as a power series expansion in Q;;

2
Nijkt = A1 0k 01 + 01031 — §5ij5kl) + A301Qij (2.4)
4
+ X2 (06 Q1 + 01 Qut + 0;1Qik + 0 Qi — 3 0ijQr1) + O(2)

where higher order terms O(2) have been discussed in [30], but are not
needed here. It contains one phenomenological, material dependent, re-
versible reactive coefficient in linear, and two additional ones in quadratic
order. If in Eq.(2.1) the Jaumann terms are combined with the quadratic
contribution (2.4) for the special value Ay = 1 (= —1) one gets something
that looks like an upper (lower) convected derivative — with some addi-
tional correction terms that ensure Q“ = 0. However, there is no general

reason why such a relation should hold for all different materials nor can
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it hold for all temperatures and pressures, since A; 2 3 generally depend on
all scalar state variables, like p, o (or p, T') and on the invariants Q;;Q;;
and Q;;QxQ@r;. Within the quadratic approximation used here, the latter
dependencies do not show up.

In [30] the relaxation of @;; has been given in linear approximation.
More generally, the dissipative material tensor o1 reads in a power series
expansion in Q;; (with ayi =0 = a;jkk)

2
Qijir = o (0051 + 00, — §5¢j5kz) (2.5)
4
+ az (6 Qi + 0k Qir + 6 Qir + 0uQjk — g[éiijl + 011Qi5]) + O(2)

with the relaxation parameters a; » being functions of the scalar state vari-
ables. It should be noted that we stay very well inside the framework of
”linear irreversible thermodynamics” that has a solid foundation in sta-
tistical mechanics, although the expressions (2.4,2.5) and (3.3) below are
genuinely nonlinear due to the dependence on state variables.

The orientational elastic stress is derived from an energy functional
by the variational derivative 1;; = § [ €dV/6Q;;, where only the trace free
part enters Egs.(2.1-2.3), which is given in quadratic order by

Yij = 1Qij + c2(QukQ ik — %Jiijlel) +0(2) (2.6)

neglecting gradient terms. Near a phase transition the rotational elastic
moduli ¢, co can be interpreted as Landau parameters. Generally they are
still functions of all scalar state variables.

Putting together Egs.(2.1-2.6) the final dynamic orientational order
parameter equations, quadratic in the variables, is obtained as

. 1
Qij + vk ViQij + Qi Qi + Qir iy — 2A1(As5 — géijAkk)

2
—2X2(AuQji + AjQir — §5ijAszkz) — A3Qij Ak
1 1 1
= ——Qij — —(QuQji — 50i;QuQr)  (2.7)
T1 T2 3
where the relaxation times are related to the elastic moduli and the relax-
ation parameters by 1/71 = 2¢11 and 1/75 = 2caa + 4eqas.

3. Stress Tensor. In the preceding sections we discussed nonlinear
reversible terms in the dynamic equation for the orientational order (2.1)
that describe couplings to flow. In the Navier-Stokes or momentum con-
servation equation

Gi + Vj(vigi + 0i5p + 0i5) = 0, (3.1)
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on the other hand, there must be appropriate counter terms describing
couplings to orientational order, due to the requirement of zero or posi-
tive entropy production, in the case of reversible and irreversible terms,
respectively [4,5,31]. Their form can equivalently be derived from Onsager
relations [32]. For the stress tensor o;; this leads to the expression

Oij = = Akiij Ukt — Vijki Akl (3.2)

The counter term to the linear deformational flow term in (2.1), ~ Agyj,
leads to a symmetric part of the stress tensor, while there are no counter
terms to the nonlinear Jaumann terms, since the latter do not at all con-
tribute to the entropy production [30]. The viscosity tensor is again ex-
panded in @Q;; as

v v
Vijkl = 51(51'1@51'1 + 0udjr) + é(@ikéjl + Qjrda + Qudjr + Qjidir)
+ 13050kt + v4(0:jQrt + 011Qij) (3.3)

with the viscosities generally being functions of the scalar state variables.
Taking together Eqs.(2.5,3.2,3.3) the stress is given by

oij = —1Aij — 1a(QinAjk + QirAir) — 30 Ak (3.4)
—v4(0i QriAr + QijArk) — MQij — M2QinQjx — N30 QriQri

where we have used the abbreviations Ay = 2¢1 A1, Ao = 2¢a\; + 4y ),
and A3 = c;A\3 — (2/3)c2A1. In the incompressible limit, which we will
use below, Axr = 0, and the viscosity v3 does not appear in the stress
tensor, while A3 drops out of Eq.(2.7). If we allow for a "redefinition” of
the pressure, p — p — 4Qri A — A3QwrQri, also v4 and A3 do not show up
explicitly in the final equations. However, in that case p looses its simple
physical meaning. For a general discussion of the incompressible limit and
its connection to redefining the pressure cf. [33].

4. Dynamic stress tensor equation. Egs.(2.7,3.1,3.4) constitute
an (isothermal) description of viscoelasticty based on a relaxing orienta-
tional order parameter tensor. This hydrodynamic-like description con-
tains as special cases [30] some of the well-known model-based descriptions
of viscoelasticity that also employ the orientational order parameter tensor,
like e.g. the Doi-Edwards model for isotropic semiflexible polymers [22].
However, most of the heuristic constitutive models are written in terms of
a dynamic equation for the stress tensor, very often quadratic in the vari-
ables and under the assumption of incompressibility. In order to compare
with those models we have to translate our Q;;/g; into a &;;/g; description
by replacing the orientational order parameter tensor (and its derivatives)
by the stress tensor (and its derivatives). This can only be done in an ap-
proximate way, since the equations are nonlinear. We will set up a power
series expansion up to second order in the (old and new) variables. Of
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course, the resulting equations are less general than the starting ones and
only applicable, if quadratic nonlinearities are sufficient for the problem at
hand. This procedure is similar in spirit to that in [21], where we used
the hydrodynamic-like description of viscoelasticity in terms of a relaxing
Eulerian strain tensor [18,19] and translated it into a dynamic stress tensor
description, again to facilitate comparison.

Taking the derivative d/dt = 0/0t +v;V; of 05 in (3.4) and replacing
dQ;;/dt according to Eq.(2.7) we get

d

—f(Qij, A, %Aijaﬁij) (4.1)

e
in terms of the orientational order parameter tensor and flow. To convert
this into the desired dynamic equation for the stress tensor, we have to
invert 045 = Uij(Qij,Aij), Eq.(3.4), into Qij = Qij(aij,Aij). This is done
approximately by the power expansion Q;; = ng) + fo"“d) + ..., where
Q(lm and Qgguad) contain expressions linear and quadratic in the variables,
respectlvely. In particular we find

N lin
/\1Q§] ) = —O'?j — VlAij (42)
X?QE?““d) = X2 (0ik0jx)" + Mva — Aav1) (o Aji + o1 Aix)°
+V1(25\1V2 — /_\le)(AikAjk)o (43)

where the superscript © denotes the traceless part of the associated tensor.
Since we assume incompressibility, A;; is traceless by itself.

Using these expressions the dynamic equation for the stress tensor
takes the final form

Dy
Dtazj +U’L] = _VooAij - VlTlD A’Lj + 2% )\ 5~ Tik0jk + 5@]2
T1V2 3 5
; Al =—A; i Al = A 4.4
+201)\1 ([ajk + 11 ]k]at g+ [0 + 11 k]at ]k) +0(3) (4.4)
where
9 I  C2 A2
Voo = 11 +4c1T1A] and r=—+—=4+2= (4.5)
T2 C1 A
and
D, ., d
Htﬂj = aTij — s(TiwAji + TjrAix) — (Tir5 + TjuQir) (4.6)
for any tensor T;; and number s. For s = —1 (s = +1) D;/Dt is the

lower (upper) convected derivative, for s = 0 the Jaumann or corotational
derivative, while for a general s a linear combination of those is invoked.
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In our case the numbers s and ¢ are

Co A vr
=—-2A —) - 4.
s 1(01 +3)\1) 201)\17’1 ( 7)
Ay Uy vir
= —2) +3=—-—)— 4.8
1( C1 /\ 1/1) 401)\1’7'1 ( )

where 7 is given in Eq.(4.5). The part ~ §;; in Eq.(4.4) is due to the fact
that @;; is traceless, while o;; is not. It can in principle be incorporated
into the pressure term by a redefinition p — p + (1/3)%, where

Y =0k + T A Akl + Y R0k + 2 0k Agl

31/47'1 8
A A 4.9
ey (V1 Akt +Ukl)8t Kl (4.9)
with
2\ 2 2 3
=4 (23T, e 2y v1(2v2 + 3va)
261)\1 )\1 T2 301 )\1 261)\1
2)\2 )\3 262
-2 —) - 4.1
1/1)\17'1( N )\1 + 361) 6A1T1IYy ( O)
1 A3 1 Co 2X2
_ A3 T A2 4.11
y 261)\1 ()\1 + 361 + /\1 ) ( )
- 11 2)\3 27’1 Co 2)\2 V9
c= ( /\1 T2 3(31 + )\1 )

1A 1M

2)\2 )\3 22) . 3VAJL
)\1 )\1 301 201 )\1

This "redefinition” of the pressure, however, is rather dubious, since it ren-
ders a ”pressure” that depends nonlinearly on flow and its time derivative,
and even more disturbing on the stress tensor itself. It is completely differ-
ent from the appropriate "redefinition” in the Q” /g description of Sec.3.
In a more reasonable description one notices that orr and its derivative
are at least of quadratic order (for Agr = 0) and do not influence the
constitutive equation for 0” in that order. For the latter one then gets
finally

72)\17’1( (412)

D, 0 r
(D;g”) + g?j = —VooAij — VlTl(DtAij) + m(O’ikUjk)O
e b'+uAJQA +o +VA]8 0+O@)(4B)
261)\1 7k 1435k ot ik ik 134k ot .
with the coefficients defined above. The time evolution of the trace

0

r
&Ukk (26 " —+ y)aklakl +x Ay A + ZUklAkl

T1

)
1A1 oA+ 0B)  (414)

is completely determined by a?j and A;; in lowest order.

(2v + 3us) (1 Apt + o))
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5. Comparison with constitutive models. Eq.(4.4) constitutes
the most general form for a constitutive equation (up to quadratic order
in the variables) that can be derived from a transient orientational order
parameter as source of non-Newtonian behavior. It contains eight mate-
rial coefficients (four linear and four quadratic ones with subscript 1 and
2, respectively), and two more in the trace part (A3,v4), characterizing
orientational elasticity, relaxation of orientational order, viscosity and flow
alignment. These coefficients are still functions of density and tempera-
ture. Most of the traditional constitutive models are much simpler than
Eq.(4.4). We will now discuss, whether and how these models fit into the
frame derived above.

The general case (4.4) contains the relaxation of stresses as well as of
flow with relaxation times 71 and 7111 /v, respectively. Here the effec-
tive viscosity v is different from the bare one (v1) due to the relaxation
of orientational order and its coupling to flow via the flow alignment ef-
fect. Thus, the Maxwell [15], Johnson-Segalman [16], and Giesekus [14]
models, which neglect flow relaxation, implicitly assume v1 = 0 and v, is
completely due to flow alignment. The quadratic stress contribution ~ r
in (4.4) is nonzero (as in the Giesekus model) only, if at least one of the
second order material parameters, ca, Ag, 1/72, is nonzero. Vice versa, all
the other models (including the Oldroyd [11] and Jeffreys [15] models) that
have r = 0 also implicitly assume c; =0 = Ao = 0 = 1/72. In principle, it
would be possible to have r = 0 for a special set of nonzero values of the
second order parameters, but this would be highly incidentally and would
work only for one special point in phase space (for one combination of den-
sity and temperature), but not in general. As a consequence the nature of
the convected derivatives of stress and flow, characterized in (4.4) by s, g, is
fixed to be of the corotational or Jaumann type (s = 0 = ¢), since in all the
models mentioned above there is either 1y =0 orca =0=X =0=1/m
or both. Thus, only the Jeffreys and Johnson-Segalman model (the latter
in the version with the corotational convective derivative of the stress ten-
sor) are compatible with viscoelasticity due to transient orientational order.
These models also consistently lack the complicated nonlinear term in the
second line of (4.4), since they have v = 0; in addition, they miss the trace
part ~ Y. That means in these models the pressure has to be interpreted
as the redefined pressure discussed above, rather than the thermodynamic
hydrostatic pressure.

6. Summary. We have explored the hydrodynamic form of non-
Newtonian fluid dynamics, if viscoelasticity is due to transient orientational
order. The dynamic equation for the orientational order parameter tensor
has been converted approximately into a dynamic equation for the stress
tensor, which is then compared with traditional constitutive models. Due
to the intricate relations among the coefficients of the nonlinearities in
this effective constitutive equation some of the models are incompatible
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with this type of visoelasticity, since they lack one type of nonlinearity,
but inconsistently not some other one, or they assume a special type of
convective derivative incompatible with other choices of the nonlinear
terms. Compatible are a generalized Giesekus model (with the convective
derivative of the stress tensor being material dependent, in general), the
Jeffreys model and the Johnson-Segalman model with the corotational
convective derivative for the stress tensor. This is quite complementary
to our recent findings [21] that the latter two models are incompatible
with viscoelasticity due to transient elasticity characterized by a relaxing
strain tensor, while Maxwell and Oldroyd models (incompatible in the
present case) have been found to be compatible. The deeper reason for
this difference lies in the type of viscoelasticity used, either a transient
elasticity leading to a relaxing strain tensor that contains the lower (upper)
convected time derivative in the Eulerian (Lagrangian) case [18,19], or
a transient orientational order leading to a relaxing orientational order
parameter tensor that contains the corotational convected time derivative
modified by second order flow alignment material parameters [30]. Of
course, in nature both (and even other) sources of viscoelasticity can be
present allowing all these models to exist, but one should bear in mind
that the general effective constitutive equation obtained in that way is by
far richer and more complicated than any of the traditional models.
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