
Macroscopic Dynamics and Hydrodynamic Maxwell Equations

In an interesting and stimulating Letter1, it has been suggested that the conventional

Maxwell equations of continuous media are incomplete and must be replaced by hydrody-

namic Maxwell equations.

Here we point out

a) that the additional terms suggested in ref.1 are not associated with truly hydrodynamic

variables; and

b) that there is no apparent general evidence that the suggested terms are more relevant

for the description of macroscopic processes than all the other (typically 1023) microscopic

variables.

Truly hydrodynamic variables come in two groups2,3: (i) conserved quantities such as

mass density, energy density and density of linear momentum for simple fluids and many

other systems; and (ii) variables associated with spontaneously broken continuous symme-

tries such as for example the staggered magnetization in an antiferromagnet (associated

with broken rotational symmetry in spin space). All truly hydrodynamic variables are

connected with a hydrodynamic collective excitation whose frequency ω vanishes in the

long wavelength limit:

lim
k→0

ω(k) = 0.

Clearly, of the Maxwell equations the charge conservation law (related to ∇ ·D) belongs

to group (i) and no part belongs to (ii).

However, there are systems or special circumstances, where it is necessary to consider

another class of variables, namely macroscopic variables. The excitation frequency of

modes associated with these does not vanish in the long wavelength limit limk→0 ω(k) 6= 0,

but their lifetime is sufficiently long so that they become important for excitations of finite

wavelength. To take into account such macroscopic variables is a valid description only,

if they are much slower than, and thus clearly distinguishable from all the microscopic

variables, which relax on microscopic timescales associated with the average time between
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two collisions of the constituent atoms or molecules. Macroscopic variables include, for

example, the modulus of the order parameter near a second order or a weakly first order

phase transition and this quantity has been incorporated into the macroscopic dynamics

near the superfluid λ-transition in 4He by Khalatnikov4. The concept of macroscopic vari-

ables has since been applied to many other condensed matter systems including superfluid

3He, incommensurate crystals and various liquid crystalline phases5−8.

In ref.1 additional dissipative terms proportional to the two additional thermodynamic

forces ∇ ×H and ∇ × E are added to the dynamic equations for D and B. This means

that the non-hydrodynamic variables ∇ × B and ∇ × D are introduced as macroscopic

variables.

First we note that D is not a hydrodynamic variable. This can be seen from the first

of the equations in eq.(2) of ref.1, where the term proportional to the electric conductivity

contains no gradients thus demonstrating that D cannot be truly hydrodynamic. While

divD is conserved (charge conservation), curlD must be non-hydrodynamic. Therefore,

in a hydrodynamic description curlD and curlB – as all other nonhydrodynamic vari-

ables – are assumed to relax on an infinitely short time scale, and only divD is kept as

(hydrodynamic) variable.

From the discussions leading up to eq.(7) of ref.1 one concludes that the newly intro-

duced transport coefficients α and β are associated with relaxation phenomena and not

with hydrodynamic excitations. Thus these newly introduced coefficients are connected

with non-hydrodynamic effects and one would have to argue why curlD and curlB should

be kept in the list of macroscopic variables. Otherwise, ∇ × D and ∇ × B relax on a

microscopic time scale and are thus adiabatically eliminated from hydrodynamics as all

the other microscopic variables.

Finally we stress that in eq.(9) of ref.1 the electric conductivity has been assumed to be

identical to zero. Taking any non-vanishing value - as is the case for a l l realistic physical

systems - it becomes clear that eq.(9) is changed qualitatively giving rise to a relaxation

due to σ.
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Thus unless the suggested dissipative coefficients α and β of ref.[1] are sufficiently large

for some very special systems or circumstances, there is no need to change the classical

Maxwell equations of continuous media.
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