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I. Introduction
The generalized Frederiks transition in freely sus-
pended smectic C∗ films is theoretically investigated
and put in relation to the electroconvection presented
a year ago [1]. In the past the Frederiks transition
in nematics has always been considered to be contin-
uous. But the inclusion of an additional ferroelectric
torque leads to rather complicated bifurcation scenar-
ios even in the case of DC Frederiks transitions. There
are two different instability branches and a restabiliza-
tion curve [2].

Depending on material parameters these transitions
switch from being continuous to discontinuous. If the
polarization is large enough and antiparallel to the ex-
ternal field, a Frederiks transition is possible even for
negative dielectric anisotropy. In a certain parameter
range the restabilization of the homogeneous state is
not obtained, since the latter exists as an isolated so-
lution, only.

A model system is introduced to produce analytic
amplitude equations for any bifurcation scenario with
two branches and restabilization.

II. Basic Equations and Geometry
This work is focused on a liquid crystal film of a smec-
tic phase. This phase is organized in layers, where in
the smectic C phase (SmC) the director n is tilted by
a fixed angle ψ relative to the layer normal k. The
projection of n onto the plane of the smectic layers is
the c director, which can be observed by polarized light
normal to the layer. Due to the existence of k and c
this phase is biaxial.

The chiral smectic C∗ phase (SmC∗) shows in ad-
dition an intrinsic twist of the director from layer to
layer. This additional symmetry breaking (C2h → C2

locally) allows microscopic electric dipoles to form a
spontaneous electric polarization P , which lies in the
smectic planes (perpendicular to both k and c) and
is twisted, too. We will neglect this twist in the fol-
lowing thus assuming that the thickness of the freely
suspended film is small compared to the pitch of the he-
lielectric C∗ phase [3], which is typically ∼ 1 . . . 10µm.
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Fig.1 One layer of SmC∗ is shown from above.
The electric field is applied along the z-direction. The
length of the film (in x-direction) is assumed to be
much longer than its width d. The layer normal k is
perpendicular to the plane of drawing.

The considered experimental setup is shown in Fig.
1 (cf. Ref.[1] and Ref.[4]) and is just similar to recent
experiments giving hints to electroconvection in SmC∗

films [5].
We derive first the fully nonlinear equations to

investigate director deformations above a DC-driven
splay Frederiks-transition, which are assumed to be ho-
mogeneous in x-direction. A linearized form is used in
chapter (III). The backflow is very weak in this sit-
uation [6] and will be neglected. With notation and
scalings of [2] we write down the energy density fG
containing a dielectric part fE and an elastic part fF :

fG = fF + fe (1)

fe = −1
2
εijEiEj − PiEi (2)

fF =
1
2
F22(div c)2 +

1
2
F33(c · curl c)2 (3)

+
1
2
F11(c×curl c)2 ,

Where the anisotropic tensors are of the form εij =
ε⊥δij + εacicj and ε⊥ is the dielectric constant perpen-
dicular to the director c. F22 is the splay, F33 the twist
and F11 the bend elastic constant introduced first in
[7]. The molecular field hi and the dielectric displace-
ment Di are given by

hi = −δfG
δci

Di = −δfG
δEi

(4)
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where the electric field Ei is due to the applied volt-
age V as well as due to the induced potential. In the
given geometry only two degrees of freedom are left,
one angle θ(z, t) of the director orientation and the in-
duced electric potential φ(z, t). The nonlinear balance
equation of the director is given by

∂tci =
1
γ1
δtrikhk (5)

where δtrik = δik − cick. With cz = sin θ this takes the
(dimensionless) form:

∂tθ =
(
(1− c23)hz − cxczhx

)
/ cos θ

=
(
F11

F22
sin2 θ + cos2 θ

)
∂2
zθ (6)

+
(

(
F11

F22
− 1)(∂zθ)2

+
εa
ε⊥

(V (t)− ∂zφ(z, t))2
)

sin θ cos θ

− sin θ p0 (V (t)− ∂zφ(z, t))

The equation of motion for φ is derived from the
Maxwell equation divD = ρ. Eliminating ρ via the
electric current density jei = σijEj and the charge con-
servation ∂t ρ+ ∇ · je = 0 one gets

0 = ∂t (∇ ·D) + ∇ · je . (7)

Equations (6) and (7) describe so far the full nonlin-
ear dynamics of the problem. Since Eq.(7) gets rather
complicated we expand it for the static case ∂tφ = 0
only and get

0 = 2
σa
σ⊥

sin θ cos θ (V − ∂zφ(z)) ∂zθ

−
(

1 +
σa
σ⊥

sin2 θ

)
∂2
zφ . (8)

III. Linear Stability
Threshold values for applied DC voltages at which the
Frederiks transition occurs are calculated from the lin-
ear parts of Eqs.(6) and (8) for deviations θ and φ
from the planar ground state (θg = 0, φg = 0). In that
limit these equations are decoupled and the trivial solu-
tion θ = θg = 0 is obtained for the induced potential.
Eq.(6) is solved by the ansatz θ(t, z) = eλtA0 cos z.
Thus the basic state becomes unstable for positive
growth rates λ of θ and the threshold is defined by
the condition λ = 0.

For non-zero values of p0 and εa, there are two
orientational torques. One is due to the dielectric
anisotropy, εa and the other is the ferroelectric torque
due to the spontaneous polarization. The threshold
formula of this generalized Frederiks instability due to
the applied DC voltage is given by [2]

p0Vc 1,2 =
1

2F

[
1±
√

1 + 4F
]

(9)

with
F ≡ εa

ε⊥p2
0

. (10)

This formula contains both, the traditional splay Fred-
eriks effect (due to dielectric torques) and the pure
“polarization Frederiks effect” (due to ferroelectric
torques). Since polarization and director are rigidly
coupled, both effects can either enhance each other (for
p0V < 0, i.e. for an external field antiparallel to the
polarization, and for F > 0, i.e. for positive dielectric
anisotropy εa > 0) and therefore reduce the threshold
voltage, or they counteract each other (for p0V > 0
and F > 0) increasing the threshold voltage (cf. Fig.
2). In the limit F → +∞ (vanishing polarization and
positive dielectric anisotropy) the two instability lines
coalesce restoring the degeneracy due to the ±V sym-
metry in this limit.

In contrast to the traditional splay Frederiks tran-
sition that exists only for εa > 0, the general Fred-
eriks transition can exist even for negative dielectric
anisotropy (for p0V < 0), if p0 exceeds a critical value
p0 > pc with

pc =
√
−4εa
ε⊥

. (11)

In that case the destabilizing effect due to the po-
larization overcomes the stabilizing effect due to the
dielectric anisotropy. Thus in Fig.2 the solid line, be-
low which the planar initial configuration is Frederiks-
unstable, extends to F < 0, but ends at F = −1/4.

F

Frederiks

stable
0

Frederiks

-6

-4

-2

0

2

4

6

8

0.40.20-0.2

Fig.2 The threshold for the general splay Fred-
eriks transition is shown as function of the quantity
F = εa/(ε⊥p2

0). The dashed curve branches out of
the traditional Frederiks transition and the solid line
describes the new branch due to the polarization Fred-
eriks effect, whereas the dotted line shows the linear
restabilization of the basic state θg = 0.

This branch is new and owes its existence to the po-
larization Frederiks effect. However, since the desta-
bilizing effect is linear in the external field strength
while the stabilizing one is quadratic, the latter will
win above a certain (higher) threshold, above which
the ground state becomes stable again. This resta-
bilization is shown as dotted curve in Fig.2. Since
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the stabilizing effect vanishes for εa → 0−, the dotted
curve diverges in this limit. On the other hand, if p0

is too small (p0 < pc), the linear destabilizing effect
is too weak to trigger the instability and the ground
state is Frederiks stable.

IV. Nonlinear Regime
To get an overview of what could happen for large di-
rector deformations we have integrated the coupled sys-
tem of Eqs.(6,8) numerically. As a characterization of
the nonlinear director field the integrated director de-
formation is introduced

B =
1
2

∫ π/2

−π/2
θ(z) dz (12)

and interpreted as an order parameter. B vanishes for
the basic state (θg = 0) and reduces to B = A for
small director deformations θ(z) = A cos z. Above the
dashed threshold line in Fig.2 (p0Vc > 0 and F > 0)
the bifurcation from the basic state is continuous and
the dielectric torque dominates both, the ferroelectric
and the elastic one. Thus, θ = π/2 is favored as equi-
librium state and for large voltages, η → ∞, B ap-
proaches π2/4 from below.

For the new instability branch (solid line in Fig.2)
the bifurcation behavior is more complex. In the range
p0Vc < 0 and F < 0 the elastic, dielectric and the ferro-
electric torques favor different equilibrium states θ = 0,
θ = 0 or π, and θ = π, respectively. Since the dielec-
tric torque dominates at very high voltages (η → ∞)
two (linear) stable equilibrium states are possible with
B = 0 or B → π2/2, respectively. In the latter state
(π-state) one has θ(z=0) ≈ π at the cell center, while
θ bends back to θ(z=±π/2) = 0 near the boundaries.

For intermediate voltages the bifurcation diagrams
are plotted as functions B(η) in Fig.3 with the reduced
voltage η

η =
V − Vc
Vc

. (13)

Motivated by the amplitude equation [2] the numeri-
cal studies were done here for three distinct values of
F11/F22 belonging to the three regimes called I, II, and
III, which describe the three possibilities of the Fred-
eriks instability and the restabilization to be contin-
uous or discontinuous. In regime I the bifurcation at

η = 0 is supercritical while the restabilization at ηr is
also continuous (inverted backward). This restabiliza-
tion threshold is indeed reached, since after increasing
first with increasing values of η, B then decreases back
to B = 0. Somewhat above ηr there is an unstable
solution between the restabilized ground state and the
isolated π-state. On the other hand, in regimes II and
III the branch that bifurcates from the ground state
(B = 0) at η = 0 never comes back to B = 0, i.e.
the restabilized ground state is generally not reached
in experiments. Above ηr there is an unstable branch
between the ground state and the π-state. In regime
III the bifurcation at η = 0 is subcritical and there are
two linear stable (solid lines) and one linear unstable
(dashed) branch even below η = 0. The range of this
hysteresis can be quite large, especially for small values
of F11/F22.

It should be mentioned, however, that the transi-
tion from the restabilization scenario to the π-state
scenario does not necessarily take place at the same
parameters, where regime I switches to regime II. An
example is shown in Fig.4, where near ηr also the valid-
ity range of the amplitude equation is rather restricted.

V. Model System
Generally it is impossible to get analytic solutions of
the fully nonlinear problem, but near the transitions,
for still small values of the order parameter (in the so-
called weakly nonlinear regime), an equation for the
amplitude of the linear mode θ(t, z) = A(t) cos z with
A ∝ η1/2 can be derived systematically. This am-
plitude equation describes the small-B region (where
B = A(t→∞)) of Figs.3 very well [2]. However, in
order to get an analytical expression for the complete
bifurcation scenarios we propose a phenomenological
model, which looks similar to an amplitude equation

∂tA = η (1− η)A− g(η)A3 −A5. (14)

For a suitable choice of the function g(η) the steady
state solutions of Eq.(14) reproduce the bifurcation
topologies of Figs.3 qualitatively correct and can be
used to investigate analytically the appropriate bifur-
cation schemes. There is the ground state A = 0 with
the instability threshold at η = 0 and the restabiliza-
tion at η = 1 (the normalized ηr), and the Frederiks-
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Fig.3 The integrated director deformation B as function of the reduced voltage η = (V −Vc)/Vc for F = −0.2
at 3 different values of F11/F22 (= 2.9, 1.5, 0.5 from left to right).
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Fig.4 A bifurcation scenario with discontinuous
restabilization near ηr (F = −0.2, F11/F22 = 2.75).

unstable state with

A2(η) =
1
2

[
−g(η)±

√
g2(η) + 4η (1− η)

]
(15)

with saddle nodes (vertical tangents) at g2(η)+4 η (1−
η) = 0, where the stability of such a solution changes
(from stable to unstable or vice versa).

With the simple ansatz

g(η) = S (C − η), (16)

where S and C are real constants, the restabilization
and π-state scenarios can be reproduced. For S > 0
and C > 1, 0 < C < 1, and C < 0 the topologies of
regimes I, II, and III in Figs.3 are reobtained, respec-
tively. Choosing S and fine-tuning C the position ηSN
(and existence) of the saddle nodes can be fitted to the
numerical results, since

ηSN 1,2 =
S2C − 2± 2

√
S2C2 − S2C + 1

(S2 − 4)
(17)

Fig.5 shows analytic plots of Eq.(15) for certain val-
ues of C and S, which look very similar to the numeri-
cal solutions in Fig. 3. The presented model system is
not restricted to this special application of smectic C∗

liquid crystal films, but can be used for other systems
showing restabilization.

VI. Electroconvection
In addition to the general Frederiks transition pre-
sented here, also electroconvection can occur, when an
external electric field is applied to the film [1, 8]. While
the Frederiks transition is homogeneous in x-direction
(qc = 0) electroconvection shows a pattern along x
with a characteristic wavenumber qc 6= 0. For a certain
range of material parameters both instability types are
possible and a competition between Frederiks with the
electroconvective instability takes place. If a pure elec-
troconvective pattern formation is searched, we suggest
experiments with F < −1/4, since no Frederiks tran-
sition is possible there (cf. Fig.2). For DC voltages, in
addition, all parameter values F < 0 will lead to an
electroconvective transition, if the field is parallel to
the polarization (upper left region of Fig.2). On the
other hand all (big) positive values of F will prefer the
Frederiks transition qc = 0 (cf. [2] for details).
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Fig.5 The bifurcation scenarios of the model system Eq.(14) for some choices of the parameters C and S
reproducing the regimes I, II, and III of Fig. 3.
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