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Introduction
Although the nematic-isotropic (NI) phase transition has been a topic of active theoretical and
experimental studies over the past few decades [1], reports on the smectic A - isotropic (AI)
transition are comparatively scarce [2–5]. This is even more applicable for direct transitions to
more complex smectic phases, like smectic C, F, I, CM or the recent family of banana phases.
These transitions are characterized by the fact that more than one type of ordering is involved.
We will discuss the AI transition within a phenomenological Ginzburg-Landau approach in
greater detail and comment briefly on other direct transitions.

All the experimental observations show that the AI transition is more strongly first order
than the NI transition, which is known to be rather weakly first order. This indicates that
the orientational order in the smA phase is much higher than that in the nematic phase. The
vicinity of a smA phase has a noticeable influence on the pretransitional phenomena in the
isotropic phase. However, there is as yet no systematic theoretical study on the AI transition
that takes into account all the key features of this transition.

Isotropic to smectic A transition
The starting point of our approach is to write down the Ginzburg-Landau free energy functional
F [6]. The nematic order parameter originally proposed by de Gennes [1] is a symmetric,
traceless tensor described by Qij = 1

2
S(3ninj − δij). The quantity S defines the strength of the

nematic ordering (the modulus of the nematic order parameter) and is zero (one) for complete
disorder (order). Thus in the isotropic phase S = 0 and in the nematic phase S 6= 0. The
smectic order parameter ψ(r) = ψ0exp(−iφ) is a complex scalar quantity whose modulus ψ0,
is defined as the amplitude of a one dimensional density wave characterized by the phase φ.
The wave vector ∇iφ is parallel to the director ni in the smectic A phase. The layer spacing is
given by d = 2π/q0 with q0 =| ∇φ |.

Keeping homogeneous terms up to quartic and gradients only to the lowest relevant order,
the total free energy near the AI transition can be written as:
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where F0 is the free energy of the isotropic phase, A = a(T − T ∗
NI) and α = α0(T − T ∗

AI).
T ∗

NI and T ∗
AI are the critical temperatures for a hypothetical second order transition to the

nematic and the smectic state, respectively, in the absence of any cross coupling. All other
coefficients, as well as a and α0, are assumed to be constants near the transition point. There is
a direct, bi-quadratic coupling between the nematic and smectic order governed by the coupling
coefficient δ. As we shall see, a negative value of δ favors the smA phase over the nematic phase,
whereas a positive δ favors the nematic phase over the smA phase. We assume C1, C2, β and
βC − δ2 (with C = C1 + C2/2) and d2 to be positive to guarantee the stability of the isotropic,
homogeneous phase at high temperatures and B > 0 to get S > 0 in the nematic phase. Some
higher gradient terms involving Qij as well as second order derivatives of ψ, which have been
disregarded in eq.(1), do not qualitatively change the physical picture.

There is no direct linear coupling term ∼ |ψ|2S [7] in the free energy (1), since such a
term cannot exist in the isotropic phase: Written in the full order parameter Qij it would
read ξij|ψ|2Qij = 0, since ξij = ξδij in the isotropic phase and Qij is traceless. However, such
a coupling term is possible near the nematic - smectic A transition, since one has uniaxial
symmetry one both sides of the transition. The isotropic gradient terms in (1) govern q0, while
the one with Qij give the relative direction of the layering with respect to the director.

Here we consider phases in which the nematic and smectic order are spatially invariant,
S = const. and ψ0 = const. and for the smectic A phase a spatially constant wave vector q0

with the layering along the director. In that case eq.(1) reads
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Note that there is now a nematic-smectic coupling term linear in S. However it comes with
a q2

0 factor and is zero in the isotropic phase. The presence of the cubic term describes the
first order character of the NI and AI transition. We note that a Landau energy of the same
structure as the first line in eq.(2) has been used to describe the reentrant behavior in liquid
crystals in [8] and for B ≡ 0 in [9]. Minimization of Eq.(2) with respect to S, ψ0 and q0 yields
the following three phases:

Isotropic phase : S = 0, ψ0 = 0, q0 = 0 (3)

Nematic phase : SN =
1

6C

[
B + (B2 − 24AC)1/2

]
> 0, ψ0 = 0, q0 = 0 (4)

Smectic A phase : SA > 0, ψ2
0 = − 1

β

(
α∗ − e∗SA +

3
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δ∗S2

A

)
, q2

0 = − 1

2d2

(d1 + e1SA) (5)

with SA given by 0 = 6ASA − 3BS2
A + 9CS3

A + 6δψ2
0SA + 2e1ψ

2
0q

2
0. We use the abbreviations

α∗ = α−d2
1/(4d2), δ∗ = δ−e2

1/(6d2), and e∗ = d1e1/(2d2). Necessary conditions for the different
phases to be stable include

∂2f

∂ψ2
0

> 0,
∂2f

∂S2
> 0,

∂2f

∂q2
0

> 0 (6)



The derivatives in (6) have to be taken at the values (3-5) for the appropriate phases. Among
others these conditions are α∗ + 3

2
δ∗S2

A < e∗SA, A−BSA + 9
2
CS2

A + δψ2
0 > 0 and 6d1 + e1SA < 0

for the smectic A phase. These three (and the other) conditions determine the stability of the
smA phase somewhat implicitly. For the isotropic phase the stability conditions are α > 0 and
A > 0.

Although the stability conditions are involved, some important qualitative features can be
extracted already at this stage. First, it is obvious that a continuous AI transition (SA = 0 =
ψ0) is not possible (except for the very special case B = 0 and T ∗

NI = T ∗
AI − d2

1/(4d)). In the
general case there is a jump in SA and ψ0 at some temperature TAI > T ∗

AI . Layering can take
place for d1 < 0, only.

The smectic A phase is in competition with possible isotropic and nematic phases. The
existence range of all three phases generally overlap. That phase with the lowest free energy
is the stable one. A (first order) transition takes place, when 2 free energies are identical. In
order to study the direct AI transition in more detail, we substitute the solution (5) for the
smectic order parameter ψ0 and for q2

0 into the free energy (2). We get a free energy expression
for the smectic A phase as a function of S alone, which can be written as

F = F0 − α∗2

4β
+
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where C∗ ≡ C − δ∗2

β
, B∗ ≡ B − 3e∗δ∗

β
, and A∗ ≡ A − δ∗α∗

β
− e∗2

3β
and α∗, δ∗ and e∗ are defined

after (5). Since δ∗ < δ < 0, we can infer C∗ > 0 from βC > δ2 and B > 0 leads to B∗ > 0. Of
the 3 extrema (∂F

∂S
= 0) of eq.(7) that exist within the stability range of the smectic A phase,

two are minima (large and small S) with a maximum in between. The minimum at the larger
S = SA is the deeper one, since B∗ > 0.

At the AI transition the isotropic minimum at S = 0 and the smectic A minimum at SA

have equal free energies, but the two phases are separated by a barrier height. These conditions,
F (SA) = F0 and δF/δS|SA

= 0, fix the transition temperature TAI and give the jump in S as
∆S = SA(TAI). Some implicit formulas for these quantities are

f1g2 + f2(g
2
1 − f1h1)

1/2 = f2g1 + f1(g
2
2 − f2h2)

1/2 (8)

with f1 = 3(−18A∗C∗ + B∗2), g1 = −3(A∗B∗ + 9α∗e∗β−1C∗), h1 = (2α∗/β)(18α∗C∗ − e∗B∗),
f2 = 18α∗C∗ − e∗B∗, g2 = 3(A∗e∗ − α∗B∗), h2 = 6α∗(2A∗ + e∗2/β), where α∗ and A∗ (or rather
α and A) have to be taken at T = TAI . Thus, eq.(8) is an implicit equation for TAI . In terms
of TAI the jump ∆S is given by

∆S = f−1
2 (−g2 + [g2

2 − f2h2]
1/2) (9)

Having calculated TAI and ∆S we can go back to eq.(5) and calculate the finite smectic order
ψ0(TAI) and the layer wavelength q0(TAI) at the transition temperature. Of course, one has to
check that TAI is within the existence range (6) of the smectic phase, e.g. that the resulting
quantities ψ2

0 and q2
0 are positive. In that case there is always a direct AI transition possible

within the framework and assumptions of our mean-field model. Of course, the NI transition
could come first before TAI is reached. To prevent this, TAI has to be larger than TNI =
T ∗

NI + B2/(27Ca).
For T < TAI the smectic A minimum represents the stable state. The isotropic state is

then a metastable one, and at even lower temperatures, it becomes unstable (a local energy
maximum).



Other transitions

For the direct transition to the biaxial, orthogonal CM phase [10] the full biaxial Qij is needed
to describe orientational order in addition to the smectic order parameter. Thus eq.(1) can be
used with Qij = 1

2
S(3ninj − δij) + 1

2
η(mimj − lilj) and η is another quantity to be determined

by minimizing the Ginzburg-Landau free energy. Concerning the polar untilted CP phase [11]
made-up by banana-shaped molecules, the in-plane polarization P is another order parameter
involved (in the CP ′ phase the polarization is across the layers [12]). The appropriate free
energy is of the form

F = FAI +
∫ [1
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1
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]
dV

where FAI is the free energy of eq.(1). Some higher order gradient terms have been omitted.
If orthogonal dolphin phases CQ and CQ′ are considered [13, 14], there are two (orthogonal)
polarizations that order at the direct phase transition (instead of one for CP and CP ′).

With respect to direct transitions from isotropic to tilted smectic phases (e.g. smectic C)
one has to take into account additionally the tilt order parameter describing the tilting of the
nematic preferred direction off the layer normal. This involves the tilt angle and tilt direction
as quantities entering the appropriate free energy. For the tilted (polar) banana phases CB1 and
CB2 [15] as well as the tilted dolphin phases CD1 and CDG [16], in addition the polarization(s)
have to be taken onto account in a Ginzburg-Landau functional.
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