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Dynamic interplay of nematic, magnetic and tetrahedral order in ferromagnetic nematic phases
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We consider the influence of tetrahedral/octupolar order on ferromagnetic nematic liquid-crystalline phases.
The presence of tetrahedral order leads to broken parity symmetry in an achiral liquid-crystalline system, in
addition to broken time-reversal symmetry associated with the existence of a spontaneous magnetization. As a
consequence we find static as well as reversible and irreversible dynamic cross-coupling terms absent in usual
ferromagnetic nematics. Several static and dynamic experiments are suggested to detect possible tetrahedral or-
der. We predict that linear gradients terms in the generalized energy involving the ferromagnetic magnetization
and the nematic director field lead to chiral domains of ambidextrous helicity. As a characteristic dissipative
dynamic cross-coupling we point out that the rotation of the magnetization can be driven by temperature and/or
concentration gradients. Conversely heat and concentration currents can be generated by rotations of the mag-
netization. As a characteristic example for reversible cross-coupling terms we analyze the consequences of the

coupling between the molecular field of the nematic director and temperature and concentration gradients.
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I. INTRODUCTION

Following the pioneering work of Fel [1, 2] on tetrahe-
dral/octupolar order in liquid crystals the theoretical inves-
tigations of the physical consequences of this type of non-
polar order associated with broken parity symmetry focused
on applications in liquid crystals: phase transitions [1, 3-5],
microscopic models and phase diagrams [6—8] as well as the
macroscopic properties of liquid-crystalline phases involving
tetrahedral order [9-15]. Most of the experimental work on
the question of tetrahedral order concentrated on the influence
on phase transitions and on macroscopic properties of liquid-
crystalline phases formed by bent-core molecules [16-28].
In addition, there were experimental reports indicating the
presence of tetrahedral order in another class of compounds,
namely ferrocenomesogens [29, 30]. Most of these observa-
tions and experimental results such as ambidextrous helicity
and ambidextrous chirality [16, 19, 26] and unusual behavior
near the isotropic - liquid crystal phase transitions including
shifts of the phase transition temperature by up to 10 K linear
in electric fields, two optically isotropic phases in magnetic
fields and reentrant isotropic phases [17, 18, 20, 23, 25, 27, 28]
could be interpreted successully in terms of the occurrence
of tetrahedral order [12, 14, 15, 31, 32]. In parallel tetrahe-
dral order has been incorporated in the dynamic description
of movable and deformable active particles which are used as
models for self-propelled microorganisms in biological appli-
cations [33-35]. Quite recently there is also growing interest
in clarifying various mathematical aspects of tetrahedral order
in two and three spatial dimensions [36-38]. Last year it has
been pointed out [31] that the observed macroscopic chiral
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domains in optically isotropic partially fluid systems [39—41]
can be interpreted naturally in terms of tetrahedral order pro-
vided a transient network is assumed. For a recent review of
tetrahedral order in liquid crystals we refer to [32].

An important issue so far not considered is the influence
of a magnetization on tetrahedral liquid-crystalline phases.
This influence is interesting from a symmetry point of view,
because the magnetization is odd under time-reversal and in
a ferromagnet with a spontaneous magnetization the ground
state breaks time-reversal symmetry.

In the magnetic domain of soft matter physics Brochard and
de Gennes predicted in their seminal work [42], the existence
of ferromagnetic nematics and ferromagnetic cholesterics in
the domain of liquid crystals. Simultaneously first experimen-
tal efforts along these lines started immediately [43], but they
were not leading to ferromagnetic nematic phases, since suit-
ably characterized and uniform magnetic nano-particles did
not exist in 1970. Only about five years ago the group around
Lisjak and Mertelj reported the successful synthesis and char-
acterization of a homogeneous phase of a truly ferromagnetic
nematic [44]. This is of particular interest, since this ma-
terial represents the first liquid multi-ferroic system at room
temperature. In addition to the director characterizing spon-
taneously broken rotational symmetry, a truly ferromagnetic
phase breaks time-reversal symmetry and rotational symmetry
in spin space. Several synthetic and static investigations also
involving the phase transition to the isotropic phase followed
quickly [45-48]. Biaxial ferromagnetic nematics have also
been reported quite recently [49]. An earlier Landau inves-
tigation of the phase transitions involved [50] could be used
to interpret some of the experimental results [44]. Building
on the macroscopic dynamic work of Jarkova et al. [51, 52],
the approach of macroscopic dynamics for truly ferromag-
netic nematics has been used successfully recently to describe



quantitatively dynamic experimental results [53, 54] and to
make further experimentally testable predictions [55]. For a
recent review on truly ferromagnetic nematics we refer to Ref.
[56].

More recently ferromagnetic cholesterics, for which one
has as a liquid-crystalline solvent a nematic containing chiral
molecules, have been synthesized and characterized [57-59].
While ferromagnetic cholesterics turn out to have many differ-
ent textures and defects depending on the ratio of cholesteric
pitch and sample thickness, also simple textures could be ob-
tained recently [59]. The latter observation will open the door
to apply a recent macroscopic description of ferrocholesterics
[60] to this rather complex system.

Our goal in the present paper is to analyze how to detect the
possible presence of tetrahedral/octupolar order in ferromag-
netic nematics, a system composed of nonchiral molecules.
We focus our investigations on macroscopic properties in the
static as well as in the dynamic domain.

The paper is organized as follows. In Sec. II we give a Lan-
dau analysis and determine the macroscopic variables. In Sec.
IIT we present the thermodynamics and the static properties of
ferromagnetic nematics followed in Sec. IV by the derivation
of the macroscopic dynamic equations. In Sec. V we make
suggestions how to detect the presence of tetrahedral order
statically and dynamically followed by brief conclusions and
a perspective.

II. LANDAU ENERGIES AND MACROSCOPIC
VARIABLES

In this section we discuss the properties of a phase, for
which one allows for the additional presence of a tetrahe-
dral order parameter in a ferromagnetic nematic phase. We
use a Landau energy approach to discuss the possible ground
states. We then identify all macroscopic variables for a se-
lected ground state.

A. Landau energy considerations

As variables in a Landau expansion we take into account, in
addition to the magnetization, M;, and the quadrupolar order
parameter, (;;, the tetrahedral order parameter, 75,1, a fully
symmetric third rank tensor [1]
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where the vectors n¢ (¢ = 1,2,3,4) span a tetrahedron and
the order parameter 7j describes the strength of the tetrahedral
order. We assume the strength of the tetrahedral order, Tj,
as constant, which is a good approximation far away from a
phase transition, where the tetrahedral order vanishes.
Tetrahedral order fully breaks rotational symmetry of
isotropic space. However, in the absence of any orienting
external field or boundary the actual orientation of the tetra-
hedron is arbitrary: Any homogeneous rotation of the tetra-
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hedron leads to a distinct, but energetically identical equilib-
rium state. These are the three Goldstone modes that appear
as (symmetry) variables in the hydrodynamic description. In
that respect, tetrahedral order is analogous to the case of biax-
ial nematic liquid crystals [61, 62].

The nematic (quadrupolar) order parameter is described by
a symmetric traceless second rank tensor Q;; = %S (3n,;nj —
di;) [63]. The quantity S is a scalar order parameter, which
describes the strength of the orientational ordering. It is zero
in the isotropic phase, where the molecules are randomly ori-
ented, while it is equal to 1 if on average all the molecules
point in the same direction. The unit vector n is the direc-
tor field and describes the orientation of the nematic ordering.
Without loss of generality one can assume n;n; = 1. It should
be emphasized that due to the equivalence n — —n all of the
equations should be invariant with respect to this transforma-
tion.

The Landau energy has, in addition to the terms already
present in a magnetic tetrahedral phase [64], also the Landau
energy expressions for a pure nematic phase and the various
coupling terms between the magnetization, the quadrupolar
and the tetrahedral order parameter. These coupling terms
read

FC = QM 4 pQT | pMT | pQTM . )
with F@M being the same as for the ferromagnetic nematic
phase, (see Ref. [50]):
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The second term in Eq. (2) was investigated in Ref. [14]:

FRT —q, Qilem Tk Timk

(szle + Q”le) zlk jmk- (4)
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There it was found that if d; + dy > 0 the phase is of
D4 symmetry where the director points along one of the im-
proper 4 axes, whereas if d; 4+ dy < 0 the phase is of C3,
symmetry and the director points along one of the tetrahedral
vectors. The cross coupling terms between the magnetization,
the quadrupolar and the tetrahedral order parameter, F@TM
are of quintic order:

FeTM =C1Q11M'M Tk Tjme

(Q’L]M + sz )MlnlkT'mk- (5)

One can see the similarities of Egs. (5) and (4). This is due
to the fact the free energy should be even in the magnetization
to ensure invariance with respect to time-reversal symmetry.

As a first step we assume the director is fixed with re-
spect to the tetrahedral structure and points along the z axis,
n = é,. To find the orientation of M in the ground state,
we vary the azimuthal and the polar angle, defined by M =
My (cos @ sin, sin psini, cos). There are five different
solutions of the angles, that correspond to a minimum of the
free energy. The first solution is where the magnetization
points along the director field M || n.



Next also the energy term coupling the magnetization and
the tetrahedral order parameter enters the picture

FMT = aTy3. T M My My M, (6)

Two of the other solutions correspond to the magnetization
lying in the plane perpendicular to the director. One of these
solutions is stable if @ > 0 and the magnetization points along
one of the other two improper 4 axes. The other solution is
stable if a < 0 and the magnetization lies within one of the
mirror planes. For the last two solutions the angle v depends
on the value of coefficients in the expression for the free en-
ergy, Eq. (2).

In the following we focus on the solution where the direc-
tor and the magnetization are parallel in the ground state as
depicted in Fig.1.

FIG. 1: The ground state of the system showing the magnetization
(red) and the director (shown as a double-headed arrow in orange)
along one of the improper 4 axes of the tetrahedron (blue).

B. Macroscopic variables

To derive the macroscopic equations of a particular macro-
scopic system one must first identify the relevant macroscopic
variables based on a specific ground state as input. In addition
to the conserved variables characteristic of an isotropic fluid
— the mass density p, the energy density € and the density of
linear momentum g — one must address the issue of variables
associated with spontaneously broken continuous symmetries
and of macroscopic variables, which relax on a long, but finite
time scale [65-67].

Inspired by the experimental results available on ferromag-
netic nematic liquid-crystalline phases [44—48, 53, 54, 56], we
will assume that in the ground state the director n and the
magnetization M are parallel. In addition, we assume that
a > 0 and that the magnetization points along one of the im-
proper 4 axes of the tetrahedron. Thus the situation considered
in the following is that of a nematic phase with Ds; symmetry
[14] with an additional spontaneous magnetization parallel to
the nematic director in the ground state.
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Rotations of the tetrahedral structure can be described by a
projection, 0I';, with [14]

oI, L

i = E eiqupk:l 6qul ) (7)

where 67, is the deviation of the tetrahedral order parameter
from the equilibrium one, 6T = Tyr — T;,‘jl. We use the
normalization [14, 32] Tj Tjr = &d;5, with & = (32/27)T5.
This relation can be inverted [14, 32] to yield

(Squk. = 2€iqupk'l5Fi~ (8)

In this paper we focus on the importance and influence of
tetrahedral order on a ferromagnetic nematic phase. The hy-
drodynamic orientational degrees of freedom associated with
the director are characterized by the variations of the direc-
tor field, dn;, with n;én; = 0. The magnetic order is due
to the existence of a spontaneous magnetization, M. It de-
scribes the strength of magnetic order by the order parameter
M = |M|, and its orientation by the unit vector m = M /M.
The former is neither connected to a Goldstone mode, nor to a
conservation law, and therefore does not give rise to a genuine
hydrodynamic variable. Nevertheless, its relaxation time can
be large enough to be relevant in the hydrodynamic regime,
and we will keep M = M — My, with M, the equilibrium
magnetization, as a macroscopic variable.

Since we will assume a rigid coupling between the direc-
tor, the tetrahedral order and the magnetization in the ground
state we have as hydrodynamic variables the director varia-
tions, dn; and the quantity 62 = n;0I;, with 6I"; given by
Eq. (7), which describes a rotation of the tetrahedral structure
about the equilibrium director and thus also about the magne-
tization in equilibrium. In addition we have as macroscopic
variables dm; and M .

III. THERMODYNAMICS AND STATIC PROPERTIES

To describe the statics of the tetrahedral ferromagnetic ne-
matic phase we proceed along the same lines as for ferrone-
matics [51, 52] and ferromagnetic nematics [53-55]. We use
the conservation laws for density p, energy density ¢, den-
sity of linear momentum g and particle concentration c. For
the magnetic degrees of freedom we have the variation of the
modulus M and the variations of the magnetic unit vector
m, dm;. In addition we have the director degrees of freedom,
on;. As discussed above there is now the additional variable
0€2 describing rotations of the tetrahedral structure about the
equilibrium director. To satisfy Maxwell’s equations the mag-
netic induction B must be considered as well.

Throughout this paper we assume local thermodynamic
equilibrium. Changes of the macroscopic variables listed
above are then related to changes of the total energy density
via the Gibbs relation,

df = Tdo + pdp + vidg; + prede + AMAM + b7 dm;

FUTAV m; + b dQ + TEAVQ + A dn,



which is the local formulation of the first law of thermody-
namics. In Eq. (9) h7”, h% and b} are the thermodynamic
conjugate forces to m;, 2 and n; and are given explicitly in
eqs.(37), (42) and (39).

In the static behavior only the combinations

h' = -V, - V,;®}

’
n _ pn
ij 0 hi - h‘z 79

— VU (10)

and
R = Y

enter the picture. In addition, in the absence of boundaries
or orienting fields, h;”/ = h;?l = h¥ = 0 to guarantee that
changes in the orientation do not change the energy.

The thermodynamic conjugates are prefactors of the differ-
entials in Eq. (9), it i.e. temperature 7', chemical potential g,
velocity v;, osmotic pressure (divided by the pressure) ., So-
called molecular fields of the magnetic order h", of the mag-
netization rotations A", of rotations about the director B and
of director rotations h;'. They (or their gradients) act as ther-
modynamic forces in the dynamics (depending whether they
are zero or finite in equilibrium).

Rotational invariance leads for eq. (9) to the additional re-
quirement

0 = ejjk.(hm/mj + hmnj + \I/S»ZV 'Q + \Ifﬁvj‘ml
+UIVim; + LV ny + OLVing) — h¥my, (1)

where the last term is due to the fact that {2 is not a scalar
quantity and is not invariant under rotations. For details cf.
[14, 64].

The material tensors will be constructed using the invari-
ants n;, 055" = 8;; — niny, €;j, and Ty, The magnetization
M; does not define an extra, independent preferred direction,
and will occur only, when its specific time-reversal behavior
is crucial. Since all material parameters can be arbitrary func-
tions of M2, only linear contributions of M; will explicitly
show up in the material tensors. This is in the same spirit as
for the case without tetrahedral order [51-54].

The thermodynamic conjugates are defined as partial
derivatives of the total energy density with respect to the ap-
propriate variable. Thus they follow from a total energy func-
tional that can be written as

f=fo+ fa+ fm + fagrad + fiin, (12)

where f is the total energy of an isotropic liquid mixture, f
contains the gradient terms associated with the director, the
orientation of the magnetization and with , fj; is the spa-
tially homogeneous magnetic energy including external mag-
netic fields and fas4rqq contains gradients of M while fiiy, is
linear in gradients.

When constructing the explicit forms of the various energy
contributions one can make use of the totally antisymmetric
symbol, €;;, the tetrahedral structure 751, and the director n;.
One has to note that T;;; is odd under spatial inversion and
n; is even under time-reversal, while m; is odd under time-
reversal. In particular we find [67]

(592 + 250 + ——(50)(6p)

T
6 2
(00)"+ 2 2:‘%5 pPCvg

fo = 2Cy
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2
9i
+ B5(6¢)(60) + B,(dc)(dp) + 5= (13)
containing the standard thermodynamic susceptibilities, such
as specific heat C'y,, compressibility x, thermal expansion «,
etc.
In general, inhomogeneous rotations of n;, m,; and {2 must

increase the total energy

fa = % e (Vima ) (Vimy) + %Kiij(ani)(Vlnk)
FEI(Ving) (Vemy) + 5 KS(V,0)(V,0)
+CIR(V) (Vany) + CLiH (Vi) (Viemy)
7]k( )(Vk ) zyk(v O')(anj)
+I17,, (Vip) (Vi) + Hff;(v ¢)(Vim;)
17 (Vo) (Viem;) + H?j,;ﬂ(vip)(vkmj)

(VZQ)(C;QV]C + C%QVJ'O' + ijﬂvjp) (14)

with the rotational stiffness (or rotational elastic) tensors

Zbkl = K{n(slakl + K3"npng€ijperig
+ K005 + K npngTijpThig (15)
Kijw = Klélékl + Konpng€ijp€iiq
+K3njn15ik + KunpngTijpThig (16)
o= K65 (ni My 4 g M;) (17)
K; = KU + Kilnin; (18)
C”k = Co(gjrpni + €jipni)np (19)
CHE = CYejupni + €jipni) My,
+C31 R (g1 Mi + €ip My )1, (20)
I3, = I (nidj; + nidi;) (1)
SN = TV (Mg + Myois) (22)
CHY = CrnpTeps(EirsTipr + €jrsTipr) (23)

where A € {0, p, c}.

The structure of f.; bears some similarity with the gradient
energy in the Doy phase [68] and contains four coefficients
each related to bending distortions of the orientation of the
magnetization and the director. In addition there are two coef-
ficients related to inhomogeneous rotations about the director
and one mixed one. We emphasize that there is only one gra-
dient term coupling the gradients of the director with those
of m;. In addition, there are cross-couplings of the inhomo-
geneous rotations of €2 with gradients of the scalar conserved
variables. Also note that the contribution ~ C'; [69], which
couples gradient of n; and of €2 is associated with V x n.

The magnetic part of the free energy homogeneous in the
magnetization in Eq. (12) reads

1 2 1 2, 1 4

fu = —M;H; — §A1(mmi) + §O‘M + ZﬂM - (24)
This expression is derived taking into account the static mag-
netic Maxwell equations. « and 3 are expansion coefficients



in a Landau expansion for M and where the contribution
~ Aj describes the coupling between m; and n;. The deriva-
tion parallels very closely that given in Ref.[52] and quite re-
cently in Ref.[64]. fy; is the Legendre transformed magnetic
energy containing the magnetic field H. The ferromagnetic
coupling in fj; leads to the parallel equilibrium orientation of
the magnetization along an external magnetic field. As a re-
sult a homogeneous external field is compatible with a homo-
geneous combined magnetization/tetrahedral structure in the
phase considered here: ferromagnetic nematic with additional
tetrahedral order. However, the degeneracy of the (combined)
orientation of the magnetization and the tetrahedral structure
is partially lifted and only the orientation of the structure per-
pendicular to the field (and m) is still arbitrary.
For the magnetic gradient energy we find

1
§K£*4(Vz‘M)(VjM) + CNH(VM)(V;Q)

+ KN (VM) (Vi) + K (VM) (V)

,

+ (ViM)(IIEMV e+ IV Vo + H%Mvjp) (25)

fMgrad =

with
KY = KYo5+ K”M nin, (26)
Cf}m = COyniTrps(€irsTjpr + €jrsTipr) 27)
Mmo = KM™ (Mo + M) (28)
KNP = KM7(no, +nid,) (29)
M = mMYe5 + 1M nn; (30)

where A € {o,p,c}. There are two stiffness coefficients
(K j\_4 , K ﬁ”) related to distortions of M. cross-couplings

J
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between distortions of M and inhomogeneous rotations of,
and about the director, are described by one coefficient each
(KMn and C) respectively), while there are in total six coef-

ficients (Hf}ﬁ ) connected to the coupling of gradients of M
with gradients of the scalar conserved variables. Finally we
note that we have kept in Eq. (25) one term linear in the mag-
netization M;: KM™.

The last energy contribution we are discussing here is the
linear gradient energy

fiin = EMT. My (V jm) + € Tymi (V). 31
This expression is identical to the linear gradient term in the
Do phase [14] for the director n;. In addition it also contains
the analogous linear gradient term, when one uses m; instead
of the director n;. These two linear gradient terms are allowed
due to the presence of tetrahedral order, which breaks parity.
The present system appears to be the first one for which two
of these linear gradient terms exist: one associated with the
nematic director and one associated with the direction of the
magnetization. As a consequence, the ground state might not
be homogeneous, resembling the case of added chirality to
nematic liquid crystals. In fact these terms are well-known by
now to give rise to ambidextrous helicity [14, 15, 31, 32]. In
case one can obtain sufficiently large domains of either hand
in a ferromagnetic nematic liquid crystal composed of nonchi-
ral constituents, this would form a rather obvious evidence of
the presence of tetrahedral order. Naturally an observation in
the visible range would be most attractive.

For completeness we list the expressions for the thermo-
dynamic conjugates that follow from the energy contributions
introduced above

vi = —gi (32)
p
T 1
0T = F-do+ s p + Bodc — V; (H;’jkvknj + MV M+ CV 0 - ngféovkmj) (33)
1 M Q M;

O = 5 =0p+ 00 + e — Vi (116, Tk + TV M 4 CLOV 0 = TV o, ) (34)
Spre = y0c+ B0 + Bydp — V; (Hfjkvknj + TNV M + CEV,0 — Hj‘j,;cvkmj) (35)
WM = —m;H; +aM + BM? + (CéwiQ[Ejkpni + €jipnilmy + CémQ[Ejkpmi + Ejipmk]np> (Vi) (Vim;)

Vi (KYM + CHOV 0 + KM iy — KMV o = M0+ T + M V)

-i-(miéjk + mkéfj) (IMiP,p + M 7V,0 + TV ,c) (Vimy) (36)
WY = —MH; — A (myng)n; (37)
U= K Vime + KiVimg + KNV M + 050V ko + 0PV ep + T Ve + CLEOVQ (38)
WY = —Ar(myng)m; (39)
‘b% = Kijklvlnk + C,?f}VkQ + K,]c\;[kaM + Hgijvka + Hzijvkp + Hiijvkc + K;ﬁnlvkml 40)
U = KIV;Q+ CpVin; + CHOVM + CFV 0 + CLOV i+ CEMV e + CLLi OV em; 1)
h =0 42)



Since the §’s in Egs. (33) - (35) describe deviations from
the constant equilibrium values of the appropriate variable,
all expressions on the left hand side of Eqs. (32) - (42) are
zero in equilibrium and can act as thermodynamic forces that
drive the dynamics of the system. On the other hand, the right
hand sides of all these equations have to be zero in equilibrium
(Euler conditions). Note that the energy fj;,, does not enter any
Euler condition (except for V;Tj;;, # 0), since it is linear in
gradients of m;.

IV. DYNAMICS OF FERROMAGNETIC NEMATICS WITH
TETRAHEDRAL ORDER

A. Dynamic equations

The hydrodynamic variables can be put into two different
classes. There are conserved variables, like the mass density,
energy density and momentum density g, which are governed
by conservation laws. The second class of variables corre-
sponds to the variables associated with spontaneously broken
continuous symmetries. Their dynamics is governed by bal-
ance laws. In our case we have from this class the director
variations, dn;, and the rotation around the director, 6€2. There
are some macroscopic variables, that relax on a finite but very
long time scale and it is therefore sensible to include them
into the macroscopic description, Ref. [67]. In our case we
will consider the magnitude of the magnetization, M, as well
as the orientational variations of the magnetization, M;: dm;.

The dynamic equations read (including the dynamic equa-
tions already given in Ref.[52]):

0
5 f TVl oo+ ) =0, @3

0
Sp+Vig =0, (44

ot
0
579t V(giv; + pdij + off + 0ij) = 0, (45)
9 . 9R
aUJer'(U’Uz‘ +37) = T (46)
0
P <8t + ’UjVj) c+Viji =0, (G

0
(m+vjvj)M+XM =0, (48

0
<8t+ujvj> mi — cpoym+ X7 = 0, (49)

<(§t + UjVj) Q — My;Ww; -+ Z = O, (50)

(gt + UjVj) n; — €jpwing + Y7 = 0, on
with the vorticity w; = (1/2)e€;;%V;vr and the pressure p.
The vorticity contributions are due to the fact that m; and n;
transform under spatial rotations as a vector, and € as a spe-
cial component of a vector [32]. These terms ensure that only
those rotations enter hydrodynamics that go beyond the global
rotation (e.g., of the coordinate system).
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In Eq. (45) we have explicitly written down the non-
phenomenological part of the stress tensor, O'Z-L, which is given
by

L m m m
oij = (mahj" —m;hi") + W5 Vimyg + UeVQ

1
— h“eijk.mk + 5(711}1? — n]hf) + @Zjvmk. (52)
Using the condition of a rotational invariant free energy, Eq.
(11), it can be brought into the form, [67]

2000 =LV imy + URVymy, + UEV,Q + UEV,0
+ ‘I)Ziv]‘nk + ‘I)Zjvink-
+ Vi(my U — m Ul 4 ;@ — ng®7,)  (53)

that guarantees angular momentum conservation [65].

The source term in the dynamic evolution equation for
the entropy density, Eq. (46), is proportional to the dissi-
pation function R representing (half of) the rate at which
the heat is transferred to the microscopic degrees of free-
dom. The second law of thermodynamics requires & > 0
for dissipative processes, while ® = 0 holds for the re-
versible parts of the currents, in which case Eq. (46) is a
conservation law. Splitting the phenomenological currents
(jz.f, Cijs 35+ 75 XM, X", Z,Y™) into the dissipative part (su-
perscript D) and the reversible one (superscript R) the Gibbs
relation Eq. (9) then leads to the condition

2R = —Vjl” — j7PVT - jPVue — oD Ay (54)
+XMPRM 4 X PR 4 ZP 1+ Y PREP > 0

for dissipative processes, where only the symmetrized veloc-

ity gradient 24;; = V;v; + V;v; enters, in order to prevent

solid body rotations to produce entropy. For reversible cur-
rents, the condition

.fR . .

=Vl = JPRVIT — Ve — o f Ay (55)

+XMRhM + X;nRh;n + ZRhQ + }/inRh;LR -0

applies.  Possible pure divergence contributions (surface
terms) are put into jif , but are not needed in the following.
The various transport contributions in the time derivatives
of Egs. (43)-(50) are all reversible. Their zero entropy pro-
duction is ensured by the non-phenomenological parts of the
stress tensor O'Z»L and by the pressure p.

A current is reversible, if it transforms under time-reversal
in the same way as the time derivative of the appropriate vari-
able, while the dissipative part of a current has the opposite
time-reversal behavior. In the following we will discuss the
dissipative and reversible dynamics separately.

To derive the dissipative parts of the phenomenological cur-
rents one first writes the dissipation function as a positive
quadratic form in the thermodynamic forces taking into ac-
count that R has to be a time-reversal symmetric, scalar quan-
tity. By taking the variational derivative of this function with
respect to the chosen thermodynamic force one gets the cor-
responding dissipative current.
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B. Dissipation function and dissipative currents
The dissipation function reads

1 1 1
R = fmj<viT><vlT>+5Dij<viuc><vjuc>+D?j(vz»Txvjuc)+fv£szijAm+ SODRTAT 4 JHM M M

2 7'
+3 Liapape | —hm@hg + i A h® 4 M A hM 4 xDRTRE D Ajphy + AD Ajhl + rjj,)cvakT
TN Ay Vigte + Tije My (GTPVLT + PV )b + Tign; b5 (WP VT + v PV )by (56)

and the dissipative parts of the currents are

7P = =k VT = DEV e = O7P My T — 7 Prjoi Tegihy — T3 Awj, ©
§$P = —=DijVjpe — DEVT — 9P MTy b — v Pnjon, Tijihlh — kJ)ZA’W’ (58)
m‘? = _nglAkl - Cijihm - CMhM h ngzkv T— Fljl)ﬁvkuc kD’j ko (59)
XD = bRSERT + DL A+ XD+ MTn (W PV T + 0PV pe), (60)
XMP = pMpM 4 ) Ay, (1
zZP = b9h8 4 1Ay, (62)
yrP = —&éh? + XDRT + Ak Ak + Tygan; 63 (0T PV + 0PV ep) (63)

where the tensors k5, Dij, D}; and b}; are of the usual uniaxial form

G = 0+ G niny. (64)
while the others read
ngl)c = FéjlekprTiijr + Fg(eimTk]’pMT + ejpTTkier) (65)
ngl)c = F?j?lekaTpr + F?%(Giperij + €jpr Thip M) (66)
gkl = 1/16 5,“ + V2(5 5 + (5 6 w) + vsnangngng + 1/4(6 nLny 6klnmj)
s (dgning + 07 GEning + Sining + 63 lnmk) + vsnpngTijpThiq (67)
cgk = C{D(qunj + €imi Nk ) Nm (68)
Czj'\f = (ezrsT]p'r + €jrsTipr)Mkaps (70)
X = x65 Myny, (71)
)‘31@ = AlDégg(equMpnk + €pkgMpnj) + )‘2an (Mjeipk + Mkeipj) + )‘BDquq”p (njeipk + nkeipj) (72)
[
: 1
C. Reversible currents Ug _ _ = )\kji hZ l]kl Ap — Ck” hm B CR M
, T VT =15, Vipe — 770 (75)
The reversible parts of the currents do not follow from any R R
potential, but can be derived by requiring that the entropy pro- Xi = bj ha —Cij kAJ' kTt wjiVjT
duction R in Eq. (54) is zero FOS Ve + Y (n x h"); (76)
MR R
X = _Ciinj (77)
37 = —EVT = DIV e + b 7R = —rRa, (78)
Tnin
Jrrk]z ik +&; ] (73) YR = (hr )5]1? + AijkAjk
i = =DfiVpe + DTRVJT + Ry +EEPVLT 4+ €0V e+ X (n x ™), (79)

+ijz jk + gcnhn (74)



where the tensors x5, DL, DfY bl and (77 1);; are all of the
form

R R R
Kij = K1 €k My + Ky € 5pminy M, (80)

and the other tensors read

VT = VT T, @
F = B+ M) ®
Cf‘? = c’fdﬁjﬁjtcfninj (83)
TLR = TR(éirsijr+€jrst‘p7')”kaps (84)
giTj” = I Myn,eip Tipr (85)
i = & Minieip Tipk (86)
Nijk = A(df;nk—i—éfknj) (87)
T0C = Ty o5 + 175 nm:)  (88)

It is straightforward to check that there is no linearly in-
dependent reversible coupling of n; and m; containing T
quadratically in addition to the contribution ~ x*. We note
that fZTj" and &7 are odd under parity, time-reversal and
n — —n symmetry. This type of coupling has not been given
before and its possible experimental consequences will be dis-
cussed in the next section.

The reversible analog of the viscosity tensor has five com-
ponents

R R
Viikl = Y1 [€ikpnjny + €ipnjn (89)

+€1pNing + €jkpNiny| NpTm Moy,
vl enpnini + eipngng
+ejipning + €jppning] M,
+vat€inpdji + €ipdik + €jipik + €jkpOit] TpTm M,
+uileinpdi + €ipdn + €ipdik + €jupdia] My
ey (Mymu + Ming) + €ap(Myny, + Myn;)
+ej1p(Ming + Myn;) + €xp(Ming + Min;)In,

This fourth order tensor is antisymmetric in the exchange of
the first pair of indices with the second one, thus guaranteeing
zero entropy production.

Due to the presence of a tetrahedral order parameter one
has dissipative dynamic cross-couplings of the temperature
and the concentration gradients with the magnetization or the
director field. This is in principle also possible in the ferro-
magnetic cholesteric phase.

If one applies a temperature or a concentration gradient to
the sample of a tetrahedral ferromagnetic nematic phase, one
can induce flow via both the dissipative and reversible cur-
rents.

V. SUGGESTIONS FOR EXPERIMENTS

In this section we discuss various experimental set-ups that
can reveal selected static and dynamic cross-coupling effects
due to the presence of tetrahedral order in ferromagnetic ne-
matics.
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A. Ambidextrous helical domains

In Sec. III we already briefly discussed the linear gradient
energy

fiin = EM T Mi(Vymy) 4 €V Tijini(Ving).  (90)

We note that these two terms can only arise for a system
with broken parity. In addition, £ and £" can have either
sign, since they are linear gradient terms. To study their con-
sequences we perform an analysis, which closely resembles
that for Doy nematics given in Ref.[14]. That is we look for
a helical state, which has lower energy than the homogeneous
state. As a result of this analysis we obtain an energy reduc-
tion due to the two linear gradient terms, which takes the form

_ 8. (€™ + &M My)?

Af = 91
I= g7t Ko+ K O
which yields for the helical wave vector
4 n M M,

QO=—3\/g 0 K2+K5"

We point out that the cross-coupling term ~ K" between
gradients of the director and the magnetization does not enter
the picture, since the components of the director and the mag-
netization along the helical axis are zero. From Eqgs.(91) and
(92) two important conclusions follow immediately. First of
all the system can gain energy by generating a helical state.
Surely the system will also generate defects, which cost en-
ergy. Provided the helical domains obtained are large enough
this result leads to a straightforward way to detect the presence
of octupolar order in a ferromagnetic nematic: the optical ob-
servation of domains of opposite handedness. The other con-
clusion is closely tied to the fact that we have two linear gradi-
ent terms. The sign and magnitudes of £ and £ are material
properties that are fixed. In the case in which the signs of £™
and £M are opposite, but their magnitude is comparable, the
expectation is to have a small value of the net wave vector or
a large wavelength for the ambidextrous helical domains.

B. Temperature gradients can drive reversible director
rotations

As a reversible cross-coupling term characteristic of ferro-
magnetic nematics with octupolar order we consider coupling
terms involving temperature, concentration and the director
field. For heat and concentration currents we get a coupling to
the molecular field of the director (compare IV C):

jl{fR = ...+ ggnh;‘ (93)
j;R = ... 4 gmh? (94)

ij

or, explicitly for o and for m; || 2 and n; || 2:

GO = o €T MO TR (95)



gt = = €My Tohy (96)
g% = - +0 97
where Ty = Bi\/gTo.

From inspection of Egs. (85) and (86) we see that the cross-
coupling ~ 3;” and ~ fj” is linear in M, Tj;, and n. Thus
the coupling is mediated by making use of the odd behav-
ior under parity and time reversal of the ground state. And
the physics is quite apparent: director rotations drive heat and
concentration currents without generating entropy.

As a complement we find that temperature gradients and
concentration gradients applied externally generate director
rotations

i~ Y = T+ €60V e (98)

Jt

or, explicitly for m; || Z and n; || 2:

Y = MO TOV T + € Mo Ty Ve (99)
YynR = = €TnM0T0vyT - é-cnj\40j;0vyC (100)
Y = 40 (101)

C. Magnetization rotations can drive heat currents

Here we present an example of a dissipative effect, which
requires a magnetization as well as tetrahedral order. From
Sec. IV B we have for the parts of the heat and concentration
current coupling to magnetization rotations

§7P = - = TP M Ty

= o = P M Ty by

(102)

3P (103)

or, explicitly for the concentration c and for m; || Zandn; || 2:

JP = o =P Mo Tohyy (104)
§P = o = PP My THRIT (105)
P =40 (106)

Inspecting Eqs. (102) and (103) we see that heat currents
as well as concentration currents are induced by rotations of
the magnetization for ferromagnetic nematics with tetrahedral
order, since such a rather unique system breaks both, time-
reversal and parity symmetry. Conversely temperature gradi-
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ents as well as concentration gradients drive the dynamics of
the magnetization via

ty ~ X0 = M T (W TPV T+ 0P V) (107)

or, explicitly for m; || Z and n; || 2:

XmP = . MyTo( PV, T + PV ue) (108)
X;/HD = ... + MOTO (’(/;TDva + 1/30sz/'66) (109)
X;nD = ... 40 (110)

VI. SUMMARY AND PERSPECTIVE

In this paper we have analyzed how the macroscopic prop-
erties of ferromagnetic nematic liquid crystals are influenced
by the presence of parity breaking octupolar order. It turns
out that many additional cross-coupling terms arise in statics
and dynamics, since now one has a ground state that breaks
both, time-reversal and inversion symmetry. Clearly the hall-
mark for the presence of octupolar order will be the detec-
tion of chiral domains of both hands in a ferromagnetic ne-
matic compound composed of nonchiral molecules: ambidex-
trous helicity. Since there are two linear gradient terms in the
system investigated here, one associated with the nematic di-
rector and one associated with ferromagnetic order, one can
tune the helical pitch by changing the magnitude of the spon-
taneous magnetization, M.

As a perspective it will be most interesting to investigate
how tetrahedral order will influence ferromagnetic cholesteric
liquid crystals, since in such a system parity symmetry break-
ing is achieved by two different mechanisms: a pseudoscalar
quantity associated with the chirality of the molecules of at
least one of the constituents as well as with octupolar order.
Such a system represents also a challenge for its mathemati-
cal description in three spatial dimensions, when both parity
breaking mechanisms are at work.
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