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ABSTRACT

In the limit of infinite yield time for stresses,
the hydrodynamic equations for viscoelastic, Non-
Newtonian liquids such as polymer melts must reduce
to that for solids. This piece of information suffices to
uniquely determine the nonlinear convective deriva-
tive, an ongoing point of contention in the rheology
literature. We find that none of the convective nonlin-
earities suggested in the rheology literature contains
the correct solid-limit. We do obtain, for the Eulerian
strain and in the limit in which the strain is small,
the so called “upper convected derivative”.
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INTRODUCTION

Viscoelastic non-Newtonian fluids behave as New-
tonian ones at low frequencies, and as solids at higher
frequencies. A consistent hydrodynamic description
needs to reflect this fact and must therefore contain,
as special cases, both the hydrodynamic theory [1, 2]
for isotropic liquids and solids. The liquid limit is
well heeded in the polymer literature and universally
correctly implemented [3, 4]. The solid limit is prob-
lematic, as we shall see, and compatibility especially
in the nonlinear regime of large displacements and ro-
tations has so far proven elusive. The reason behind
it is probably the lack of a consistent hydrodynamic
theory for solids. This text is a shortened version of
[5].

One of the obstacles is that such a theory neces-
sarily employs a strain tensor different from the one
customarily used [6]. The usual strain tensor is of the
Lagrange type, derived from equations of motion for
mass points, while a framework to set up hydrody-
namic equations including dissipative terms only ex-
ists in the Eulerian description – which considers evo-
lution of field variables at spatial points. Consistency
forbids a mixing of both descriptions and requires an
Eulerian strain tensor [7]. (We note that the linear
hydrodynamic theory may mix both descriptions, as
the smallness of the displacements ensures that the
discrepancy is negligible.)

The presentation of the nonlinear hydrodynamic
theory for solids is what we shall do first. Then these
equations are generalized for non-Newtonian fluids by
adding relaxation-type terms to account for a finite
yield time of the stresses, such that in the high fre-
quency limit the theory is unchanged, but in the low
frequency limit only the terms of the isotropic liquid
hydrodynamics remain. So, by ensuring the valid liq-
uid and solid limits, this approach leads to the correct
hydrodynamic theory for any liquids displaying vis-
coelasticity. It is of great importance for rheology, as

many competing theories exist, which differ especially
in their respective nonlinear convective derivatives.

Note that the insistence on the solid limit also
determines the choice of variables, being that of a
solid: the strain and the conserved quantities. As
the solid is the more complicated of the two limits,
there is no reason to, in addition, take the stress
as an independent variable, as most theories in the
rheology literature do, see for instance Chap. 7-9
in the first of [4]. Aside from unnecessarily making
a derived quantity independent, this approach also
commits a cardinal hydrodynamic sin, because the
stress as a hydrodynamic flux contains reactive and
dissipative parts, and does not possess a well-defined
time reversal parity – without which we have no way
of applying the Onsager relations.

NONLINEAR HYDRODYNAMICS OF SOLIDS

We now introduce the nonlinear hydrodynamic
theory of solids. A proper description relies on two
coordinates: the actual spatial coordinate ri, specify-
ing a point in an elastic body, and the coordinate ai
this point has possessed in the absence of any stresses.
More carefully, starting from a stress-free elastic body,
we consider a point with the initial coordinate ai.
As the body is translated, rotated, compressed and
sheared, this point is displaced to ri – especially in
soft matter generally rather remote from ai. Since all
points of the body have a unique pair of ai and ri, the
function ri(am) is unique and invertible, the result of
which is denoted as ai(rm). For briefness, we shall
refer to all ri as the real space, and to all ai as the
initial space.

The energy density of an isotropic liquid in its rest
frame is a function of the mass and entropy density,
ε(ρ, s) – or equivalently, dε = Tds + µdρ. All vari-
ables, including the conjugate ones, temperature T
and chemical potential µ, are here functions of the
real coordinate rm. As a result, the spatial depen-
dence of (say) the temperature is quite independent
of the liquid’s compressional state. This is the Eu-
ler notation, and its basic advantage is that physics,
which we insist must be local, is also expressed in lo-
cal terms, accounted for by quantities at the real co-
ordinates rm. Consider for instance the diffusive heat
current, which is given by the local gradient of the
temperature, ∼ ∂T (rm)/∂rk, only in the Eulerian de-
scription.

Returning to solids, we have two choices: First,
take all variables including especially the temperature
and chemical potential as functions of am, and em-
ploy them with the strain tensor ULik. This would
be consistent, but highly inconvenient. For instance,
the heat current ∼ ∂T (rm)/∂ri at the real space
point rm now presumes the knowledge (not usually
available) of the global transformation, rm ↔ am,



as ∂T (rm)/∂ri = [∂T (am)/∂ak](∂ak/∂ri). Similarly,
with g the momentum density, the angular momentum
density is r(am) × g(am) rather than a × g(am). (If
the system is only weakly deformed, with ui = ri − ai
small, the above differences between ri and ai may be
neglected to linear order.) Finally, more specific to the
issue at hand, our equations need to contain both the
elasticity theory and the liquid hydrodynamics. The
latter, however, is usually and concisely given in the
Euler notation.

The second, and the only actually viable, choice
is to take all variables including the strain tensor in
the local, Eulerian notation, as functions of rm. We
shall therefore employ the Eulerian strain tensor [7, 8],
introduced via

Uik = 1
2
[δik − (∂aα/∂rk)(∂aα/∂ri)], (1)

where the usual summation convention applies. We
are now using Latin and Greek indices to discriminate
the components in real and in initial space, respec-
tively. As discussed, a and r are vectors of different
spaces, so they transform as vectors under rotations in
initial and real space, respectively. The elastic energy
is independent of the orientation of the initial space.
Given any transformation a ↔ r, we should still be
free to take a global but arbitrary rotation of all a, ie,
rotate the initial space with respect to the real space.
Therefore, a and r are indeed vectors of two different
spaces, and a quantity such as ∇iaα ≡ ∂aα/∂ri is a
vector both in real and initial space, (a bi-vector,) and
not a second rank tensor.

We proceed to show that the bi-vector ∇iaα not
only contains the information about the strain, as
shown in Eq (1), but also that about the local orien-
tation. The polar decomposition theorem (cf W. Noll,
p.65 ff, Vol.2 of [3]) states

∇iaα = RαjΞij , (2)

where Rαj is the rotation matrix that rotates the lo-
cal preferred directions in real space back to the global
ones in initial space, while Ξij is a symmetric matrix
that deviates from δij only for finite strains. Con-
sider first the unstrained case Ξij = δij : Because
of daα = (∇iaα)dri with da2

α = dr2i , the gradient
∇iaα is indeed a rotation matrix Rαj , and must sat-
isfy RαjRαk = δjk, RαjRβj = δαβ . For finite strains,
Eq. (1) implies δij − 2Uij = RαkΞik RαlΞlj = ΞikΞkj ,
the square root of which is

Ξij =
p
δij − 2Uij ≈ (δij − Uij − 1

2
UikUkj · · · ). (3)

[This expansion is valid for small strains Uij , but ar-
bitrary rotations Rαj . The square root of a matrix is
defined by its power series. One can verify Eq (3) by
calculating ΞikΞkj .]

In accounting for solid behaviour, we need to keep
track of the local preferred directions, or Rαi, which
may vary considerably by accumulation over a long
distance, even if the strain is small – think of a sheet
of single crystal, slightly bent over a long stretch to
form a tube of large radius. Let us consider as an
example the harmonic approximation for the energy
E =

R
εdV ,

ε = 1
2
KijkmUijUkm = 1

2
KαβγδUαβUγδ (4)

Uij = RαiRβjUαβ (5)

Kikjm = RαiRβjRγkRδmKαβγδ (6)

where Uαβ and Kαβγδ are the attendant quantities
in the initial space. The elements of Kαβγδ are the
constant elastic moduli of the solid.

More generally, ε also depends on the mass, en-
tropy and momentum density, ρ, s, and gi. So the
final thermodynamic expression for an elastic medium
is

dε = Tds+ µdρ+ vidgi + ψαid∇iaα. (7)

Turning now to dynamics, the equation of motion
for aα is

d
dt
aα ≡ ȧα + vk∇kaα = −Yα. (8)

In equilibrium, with the dissipative contribution Yα
vanishing, this equation simply states the fact that the
initial coordinate aα of a mass point does not change
when one moves with it.

The entropy production ṡ + ∇i(svi − fi) = R/T ,
conservation of mass and momentum, ρ̇ + ∇i(ρvi) =
0, ġi + ∇j(σij − σD

ij) = 0, and Eq. (8) represent the
complete hydrodynamic theory of solids, where

σij = p δij + vigj + ψαj∇iaα, (9)

R = fi∇iT + σD
ijAij − Yα∇kψαk, (10)

[with Aik ≡ 1
2
(∇ivk +∇kvi), p ≡ −ε+Ts+µρ+ vigi]

are unambiguously given by thermodynamics, Eq. (7),
via the hydrodynamic standard procedure. Eq. (10)
implies that the three fluxes fi, σ

D
ij , Yα are linear com-

binations of the three forces ∇iT,Aij ,∇kψαk. These
give rise, respectively, to the dissipative phenomena of
diffusive heat current, viscous stress, and defect diffu-
sion. The structure of the linear combination, ie the
symmetry of the Onsager coefficients, is given by the
symmetry group of the crystal [6]. For isotropic solids,
we have only diagonal terms, especially fi ∼ ∇iT and
Yα ∼ ∇kψαk. As discussed at length in [1, 9], it is
incorrect to take the latter contribution as zero: The
initial coordinate of a mass point may change, ȧα 6= 0,
in the absence of any mass current, vi = 0, when there
is diffusive motion of vacancies. Conversely, motions
of interstitials involve mass current, vi 6= 0, but no
change of crystal points, ȧα = 0.

Since ∇iaα as a variable is completely equivalent
to Uij and Rαi, the equation of motion (8) for ȧα may
always be rewritten as two equations of motion, for
U̇ij and Ṙαi. Though rather more complicated, this is
certainly closer to the conventional elasticity theory.
With the help of Eqs. (2) and (3), we rewrite Eq. (8)
as

2 d
dt
Uij = [ΞjlΞlk∇ivk +RαkΞjk∇iYα] + [i↔ j], (11)

ΞijRαl
d
dt
Rαj = −Ξlj∇ivj −Rαl∇iYα − d

dt
Ξil, (12)

which may be approximated by taking Uij , Aij , Yα
and Rαj

d
dt
Rαi − ωij as small quantities (with 2ωij ≡

∇jvi−∇ivj). To second order in the small quantities,
though neglecting terms of order Ukj∇iYα, the result
is

d
dt
Uij −Aij = [ 1

2
(∇iYα)Rαj − (∇ivk)Ukj ] + [i↔j] (13)

Rαj
d
dt
Rαi − ωij = [ 1

2
Rαi∇jYα + 1

2
UjkAik]− [i↔j] (14)

Written in the conjugate variables of Uij , Ψij ≡
∂ε/∂Uij , and Rαi, χαi ≡ ∂ε/∂Rαi, the stress tensor
Eq. (9) reads

σij = p δij + vigj −Ψij + ΨkiUjk + ΨkjUik

+χαjRαi + 1
2
χαk(UkiRαj + UkjRαi). (15)



This ends the presentation of the hydrodynamic
theory of solids. These equations account for any solid
system, including crystals of all symmetry groups and
glasses. This pertains especially to the nonlinear
structure, important if one is to account for large
displacement and rotation, strong compression and
shear. These are usually small in bulk crystals, but
quite large in complex liquids. In awareness of this,
many nonlinear models for convective-like nonlinear-
ities have been suggested [3, 4], though none was
constructed to contain the nonlinear solid limit.

NON-NEWTONIAN FLUIDS

To generalize our results to visco-elastic Non-
Newtonian fluids, we note first that the solid hydro-
dynamics contains the liquid hydrodynamics by set-
ting to zero the elastic stress ψαi = ∂ε/∂(∇iaα).
Confining ourselves to isotropic systems, it suffices
to set Ψij = 0, because χαi = 0 already holds.
The latter is true, since for isotropic systems there
is no preferred direction to keep track of locally, so
no material tensor in real space will depend on Rαi,
which implies χαi = 0. This is explicitly seen in
the harmonic approximation, Eq (4), where Kαβγδ =
(KL −KT /3)δαβδγδ +KT /2(δαγδβδ + δαδδβγ) due to
isotropy. Inserting this into Eq (5), we again obtain
Kijkm = (KL−KT /3)δijδkm+KT /2(δikδjm+δimδjk),
manifestly independent of Rαi.

Taking Uij as the variable that relaxes as long
as Ψij 6= 0, we connect the isotropic solid dynam-
ics to fluid dynamics such that the former holds in the
high frequency regime (where the relaxation is neg-
ligible) and the latter in the low frequency regime
(where relaxation is dominant). Therefore, we pro-
ceed by allowing a relaxation term Xij in Eq. (13),

U̇ij + · · · = Xij . It leads to an additional term in
the entropy production, Eq (10), R = · · · − XijΨij ,
which implies to lowest order, X0

ij = −αTΨ0
ij and

Xkk = −αLΨll. (The superscript 0 denotes the trace-
less part of the given tensor.) So we have

d
dt
Uij − Aij + [(∇ivk)Ukj − 1

2
(∇iYα)Rαj + i↔ j]

= −αTΨ0
ij − 1

3
αLΨkkδij , (16)

with αT , αL denoting two transport coefficients.
To understand the added terms, one can use
the example of the harmonic approximation,
Eq (4), yielding αTΨ0

ij = αTKTU
0
ij = U0

ij/τT
and αLΨkk = αLKLUkk = Ukk/τL. Clearly, this
implies relaxation for U0

ij and Ukk, with the re-
spective relaxation times τT and τL. (In principle,
there are also two thermodynamic cross derivatives,
δΨkk = Kρδρ+KT δT .)

CONCLUSIONS

Note the universality of the results, especially the
convective terms ∼ (∇ivk), which remarkably are
not preceded by any material-dependent coefficients.
Their form is independent from the above approxima-
tion for Xij and will remain unchanged even if addi-
tional variables are introduced, eg to account for the
material-dependent rheological behavior such as shear
thinning and normal stress differences.

To account for large deformation, rotation and
velocity, many different nonlinearities, as mentioned,
have been suggested and implemented in the rheology

literature, of which the two more popular ones are
the upper and lower convective derivatives. Denoting
an arbitrary matrix as (∗), the former is defined asbDu(∗) ≡ (∂/∂t + v · ∇)(∗) + (∇v)(∗) + (∗)(∇v)T ,

the latter as bD`(∗) ≡ (∂/∂t+v · ∇)(∗)− (∇v)T (∗)−
(∗)(∇v). Both are derived by invoking some variant
of a postulated general principle, usually referred to as
the “material frame independence”. In the rheology
literature [3, 4], (∗) is the stress tensor, taken as in-
dependent, but in principle it could also be the strain
tensor.

Reviewing the many equations of motion consid-
ered above, it is easy to see that Eqs. (13) and (16) for

Uij can indeed be written as bDu U−A = O(∇Y, Ψ).
None of the other equations may be brought into this
form: It is not valid for ȧα and Ṙαi, see Eqs. (8, 12,

14); nor for the exact equations U̇ij , Eq. (11). Espe-
cially, it does not hold for the stress tensor.

This is a rather serious shortcoming and subjects
to grave doubts all those descriptions that include
upper and lower convected derivatives, combinations
thereof, or yet another kind of quadratic nonlinear-
ities. To overcome these, the authors really need to
convincingly argue why their postulated general prin-
ciple overrules the simple and physical requirement
that, for infinite yield time of the stress, the dynamics
of non-Newtonian liquids such as polymer melts is
that of an isotropic elastic medium.
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