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Simple Landau model of the smectic-A–isotropic phase transition
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Abstract. A simple Landau-type free energy function is presented to describe the smectic A - isotropic
phase transition. Varying the coupling between orientational and positional order parameters a smectic A -
isotropic or a nematic - isotropic phase transition occurs. Within this model the smectic A - isotropic phase
transition is found to be always more strongly first order than the nematic - isotropic phase transition.
The theoretical results are found to be in good agreement with all published experimental results.

PACS. 64.70.Md Transitions in liquid crystals – 05.70.Fh Phase transitions: general studies – 61.30.-v
Liquid crystals

1 Introduction and motivation

Although the nematic-isotropic (NI) phase transition has
been a topic of active theoretical and experimental studies
over the past few decades [1], reports on the smectic A -
isotropic (AI) transition are comparatively scarce. These
include experimental [2–5] and theoretical [4,6–9] studies.

The pretransitional behavior of dodecylcyanobiphenyl
(12CB) exhibits a direct AI transition [2] which is differ-
ent from those of NI transition. The existence of smectic
A (smA) type cybotactic groups in the isotropic phase
is detected with differential scanning calorimetry and low
angle x-ray measurements. The high nonlinearity in a AI
phase transition region is obtained due to the formation
of the cybotactic groups of molecules. Ocko et al [3] mea-
sured the smectic ordering induced by the free surface in
the isotropic phase of 12CB, which does not have a ne-
matic phase but undergoes a first order transition from an
isotropic to a smA phase at TAI=57.7◦ C, where TAI is
the AI transition temperature. Olbrich et al [4] measured
the strain birefringence above a AI phase transition in
liquid crystalline side-chain elastomers under an external
static mechanical stress. They pointed out that both the
nematic and smectic fluctuations become relevant above
the AI phase transition. The same pretransitional behav-
ior for the AI transition is also obtained in 10CB and 12CB
[5,10]. All the experimental observations described above
show that the AI transition is more strongly first order
than the NI transition, which is known to be very weakly
first order. This indicates that the orientational order in
the smA phase is much higher than that in the nematic
phase. The vicinity of a smA phase has a noticeable in-
fluence on the pretransitional phenomena in the isotropic
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phase. The value of the temperature difference TAI −T ? is
also higher than that of TNI −T ?. Here T ? is the absolute
stability limit of the isotropic phase. Below this tempera-
ture no stable isotropic phase is possible.

However there is no systematic theoretical study on
the AI transition. Based on their lattice model Ronis and
Rosenblatt [6] suggested that a direct AI transition is pos-
sible. In a separate paper Rosenblatt [7] predicted that in
the presence of an intense magnetic field, materials, which
in the absence of any field undergo a direct AI transition,
can exhibit an intermediate nematic phase. Lelidis and
Durand [9] described the AI transition based on a Landau
model. We note, however, that there is a problem with
their model which will be discussed below.

In none of the theoretical studies undertaken so far
the key features of the AI transition were characterized.
Thus it is interesting to see under what conditions the
AI transition is more favorable than a NI transition. The
purpose of the present note is to study the direct AI tran-
sition for the bulk state within the framework of a Landau
phenomenological model.

2 Model

The starting point of our approach is to write down the
Ginzburg-Landau free energy functional F . The nematic
order parameter originally proposed by de Gennes [1] is a
symmetric, traceless tensor described by Qij = 1

2S(3ninj−
δij). The quantity S defines the strength of the nematic
ordering (the modulus of the nematic order parameter)
and is zero (one) for complete disorder (order). Thus in
the isotropic phase S = 0 and in the nematic phase S 6= 0.
The smectic order parameter ψ(r) = ψ0exp(−iφ) is a com-
plex scalar quantity whose modulus ψ0, is defined as the
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amplitude of a one dimensional density wave character-
ized by the phase φ. The wave vector ∇iφ is parallel to
the director ni in the smectic A phase. The layer spacing
is given by d = 2π/q0 with q0 =| ∇φ |.

Keeping homogeneous terms up to quartic and gradi-
ents only to the lowest relevant order, the total free energy
near the AI transition can be written as:

F = F0 +
∫ [1

2
AQijQij − 1

3
BQijQjkQki

+
1
4
C1(QijQij)2 +

1
4
C2QijQjkQklQli

+
1
2
α|ψ|2 +

1
4
β|ψ|4 +

1
2
δ|ψ|2QijQij (1)

+
1
2
b1|∇iψ|2 +

1
2
b2|∆ψ|2 +

1
2
e1Qij(∇iψ)(∇jψ

∗)
]
dV

where F0 is the free energy of the isotropic phase, A =
a(T − T ∗

NI) and α = α0(T − T ∗
AI). T ∗

NI and T ∗
AI are the

critical temperatures for a hypothetical second order tran-
sition to the nematic and the smectic state, respectively,
in the absence of any cross coupling. All other coefficients,
as well as a and α0, are assumed to be constants near the
transition point. There is a direct, bi-quadratic coupling
between the nematic and smectic order governed by the
coupling coefficient δ. As we shall see, a negative value of
δ favors the smA phase over the nematic phase, whereas
a positive δ favors the nematic phase over the smA phase.
Naturally there exists also a term which is cubic in Qij and
quadratic in ψ; this term is not considered in this paper,
since it would be of fifth order while all other spatially ho-
mogeneous terms in eq.(1) are at most of fourth order. We
assume C1, C2, β and βC − δ2 (with C = C1 + C2/2) and
b2 to be positive to guarantee the stability of the isotropic,
homogeneous phase at high temperatures and B > 0 to
get S > 0 in the nematic phase. Some higher gradient
terms involving Qij as well as second order derivatives of
ψ, which have been disregarded in eq.(1), do not qualita-
tively change the physical picture, but will be discussed
in an Appendix for completeness. The isotropic gradient
terms in (1) guarantee a finite wavelength q0 for the smec-
tic density wave. Symmetry would allow another term,
(b3/2)|∇i∇jψ|2, which however does not lead to any new
contribution (compared to that ∼ b2) for the smectic A
phase and has therefore been omitted here. The gradient
term ∼ e1 involving Qij governs the relative direction of
the layering with respect to the director.

There is no direct linear coupling term ∼ |ψ|2S [9] in
the free energy (1), since such a term cannot exist in the
isotropic phase: Written in the full order parameter Qij it
would read ξij |ψ|2Qij , which however is identically zero,
since the material tensor ξij takes in the isotropic phase
the form ξij = ξδij and Qij is traceless. However, such
a coupling term is possible near the nematic - smectic A
transition, since one has uniaxial symmetry one both sides
of the transition.

Here we consider phases in which the nematic and
smectic order are spatially invariant, S = const. and ψ0 =
const., and for the smectic A phase a spatially constant
wave vector q0 with the layering along the director. In that

case eq.(1) reads

F − F0 =
∫ [3

4
AS2 − 1

4
BS3 +

9
16

CS4

+
1
2
αψ2

0 +
1
4
βψ4

0 +
3
4
δψ2

0S2

+
1
2
b1ψ

2
0q2

0 +
1
2
e1ψ

2
0Sq2

0 +
1
2
b2ψ

2
0q4

0

]
dV (2)

Note that there is now an effective nematic-smectic cou-
pling term linear in S. However it comes with a q2

0 factor
and is zero in the non-smectic case. The presence of the
cubic terms (∼ B and ∼ e1) describes the first order char-
acter of the NI and AI transition. We note that a Landau
energy of the same structure as the first line in eq.(2)
has been used to describe the reentrant behavior in liq-
uid crystals in [11] and for B ≡ 0 in [12]. Minimization of
Eq.(2) with respect to S, ψ0 and q0 yields the following
three phases:

Isotropic : S = 0, ψ0 = 0, q0 = 0 (3)

Nematic : SN =
1

6C

[
B + (B2 − 24AC)1/2

]
> 0,

ψ0 = 0, q0 = 0 (4)

Smectic A : SA > 0, ψ2
0 = − 1

β

(
α∗ − e∗SA +

3
2
δ∗S2

A

)
,

q2
0 = − 1

2b2
(b1 + e1SA) (5)

where SA is defined by :
2α∗e∗

3β
+ 2A∗SA − B∗S2

A + 3C∗S3
A = 0

We use the abbreviations α∗ = α − b2
1/(4b2), δ∗ = δ −

e2
1/(6b2), e∗ = b1e1/(2b2) and C∗ = C − δ∗2/β, B∗ =

B − 3e∗δ∗/β, and A∗ = A − δ∗α∗/β − e∗2/(3β).
We show in Fig.1 the orientational order SN , SA and

the positional order ψ0 for the nematic and smA phases
(4,5) plotted versus temperature. This is done for a set
of parameters, where a direct isotropic to smA transition
is possible. Fig.1 shows that both order parameters, SA

and ψ0 jump simultaneously at the AI transition point.
We also see that orientational order in the smA phase is
much higher than that of the nematic phase.

Necessary conditions for the different phases to be sta-
ble are (F =

∫
fdV )

∂2f

∂S2
> 0,

∂2f

∂S2
· ∂2f

∂ψ2
0

− (
∂2f

∂S∂ψ0
)2 > 0

∂2f

∂ψ2
0

> 0,
∂2f

∂S2
· ∂2f

∂q2
0

− (
∂2f

∂S∂q0
)2 > 0,

∂2f

∂q2
0

> 0,
∂2f

∂q2
0

· ∂2f

∂ψ2
0

− (
∂2f

∂q0∂ψ0
)2 > 0,

and det

∥∥∥∥∥ ∂2f

∂yi∂yj

∥∥∥∥∥ > 0 (6)

were yi ∈ {S, ψ0, q0} and i,j run from 1 to 3. The deriva-
tives in (6) have to be taken at the values (3-5) for the
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Fig. 1. S and ψ0 versus temperature. The upper (lower) solid
line represents the orientational order parameter SA (SN ),
while the dashed line represents the positional order parameter
ψ2

0 in the smA phase. The values of the parameters in eq.(2)
were taken to be α0 = .1J/K, a = .1J/K, B = .8J , C = .53J ,
β = 4J , δ = −.89 J (for the AI transition) and δ = .16J (for
the NI transition). b1 = .7J , b2 = .7J and e1 = .1J .

appropriate phases. For the isotropic phase the stability
conditions are simply α > 0 and A > 0. The nematic
phase is stable, if 2α + δS2

N > 0 and 24AC < B2.
For the smectic A phase the first three stability condi-

tions

A − BSA +
9
2
CS2

A + δψ2
0 > 0 (7)

α∗ +
3
2
δ∗S2

A < e∗SA (8)

b1 + e1SA < 0 (9)

ensure SA, ψ2
0 and q2

0 to be indeed positive quantities.
The Cauchy conditions in (6) lead to only two additional
stability criteria (since ∂2f/(∂q0∂ψ0) = 0)

A∗ − B∗SA +
9
2
C∗S2

A +
e2
1

6b2
ψ2

0 > 0 (10)

A − BSA +
9
2
CS2

A + δ∗ψ2
0 > 0 (11)

while the determinant condition is

A∗ − B∗SA +
3
2
C∗S2

A > 0 (12)

Since δ∗ < δ and b2 > 0, conditions (12) and (11) are
stronger than (10) and (7), respectively. These stability
conditions determine the existence ranges (in terms of
temperature) of the different phases rather implicitly. Al-
though they are involved, one important qualitative fea-
ture can be extracted immediately. It is obvious that a
continuous AI transition (SA = 0 = ψ0 at the transition
temperature) is not possible, except for the very special
case B = 0 = e1 and T ∗

NI = T ∗
AI +b2

1/(4b2α0). (As one can
see from these conditions, a total of seven coefficients must
either vanish or obey a very special relationship. That all
of these conditions are met is very unlikely.) In the general
case there is a jump in SA and ψ0 at some temperature
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Fig. 2. The free energy F as a function of the order parameter
S for different values of the coupling constant δ. The solid line
(δ = 0.16J) represents the nematic- isotropic transition while
the dashed line (δ = −0.89J) represents the isotropic - smectic
A transition. The other parameter values are the same as in
Fig.1

TAI > T ∗
AI . Since the transitions involved are first order,

the edges of the stability ranges (where ’> 0’ or ’< 0’ is
replaced by ’= 0’ in (7-12)) are not the phase transition
lines. However, any phase discussed has to be within its
stability range, in order to be a real physical phase.

Fig.2 shows the influence of the coupling term δ on the
NI and AI transition in the free energy versus orientational
order parameter. The dashed curve is calculated for a neg-
ative δ. The transition is always isotropic - smectic A. At
T = TAI , the free energy has two minima at S = 0 and
S 6= 0 (also ψ0 6= 0) corresponding to the isotropic and
the smA phase. There is no third minima for the nematic
phase for this particular value of δ.

3 Direct isotropic–to–smectic-A transition

The smectic A phase is in competition with possible iso-
tropic and nematic phases. The existence ranges of all
three phases generally overlap. That phase with the lowest
free energy is the stable one. A (first order) transition
takes place, when 2 free energies are identical. In order to
study the direct AI transition in more detail, we substitute
the solution (5) for the smectic order parameter ψ0 6= 0
and for q2

0 6= 0 into the free energy (2). We get the free
energy density for the smectic A phase as a function of S
alone, which can be written as

f = f0 − α∗2

4β
+

α∗e∗

2β
S+

3
4
A∗S2 − 1

4
B∗S3 +

9
16

C∗S4 (13)

where the starred coefficients are defined after (5). Since
δ∗ < δ < 0, we can infer C∗ > 0 from βC > δ2; similarly
B > 0 leads to B∗ > 0. Of the 3 possible extrema ( ∂f

∂S = 0
leading to a real solution for S) only those are relevant
that exist within the stability range of the smectic A phase
(since we assumed ψ0 6= 0 and q2

0 6= 0 when deriving (13)).
In order to make the discussion of the temperature

dependence of the transition more transparent, we plotted
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Fig. 3. The free energy F as a function of the order parameter
S for the superheated smectic temperature T ∗∗

AI , the transition
temperature TAI , and the temperature T ?

AI , where the isotropic
state becomes unstable, for δ = −0.89J . The other parameter
values are the same as in Fig.1

in Fig.3 the free energy (eq.(13)) versus the orientational
order for different temperatures taking a negative value
for δ.

If there are three extrema two are minima (stable or
metastable phases), one with large and one with small S,
and there is a maximum (unstable solution) in between.
The minimum at the larger S = SA is the deeper one,
since B∗ > 0, and represents thus the relevant possible
smectic A phase.

At the AI transition the isotropic minimum at S = 0
and the smectic A minimum at SA have equal free ener-
gies, but the two phases are separated by a barrier height.
These conditions, F (SA) = F0 and δF/δS|SA = 0, fix
the transition temperature TAI and give the jump in S as
∆S = SA(TAI). Some implicit formulas for these quanti-
ties are

f1g2 + f2(g2
1 − f1h1)1/2 = f2g1 + f1(g2

2 − f2h2)1/2 (14)

with
f1 = 3(−18A∗C∗ + B∗2), g1 = −3(A∗B∗ + 9α∗e∗β−1C∗),
h1 = (2α∗/β)(18α∗C∗ − e∗B∗), f2 = 18α∗C∗ − e∗B∗,
g2 = 3(A∗e∗ − α∗B∗), h2 = 6α∗(2A∗ + e∗2/β), where α∗
and A∗ (or rather α and A) have to be taken at T = TAI .
Thus, eq.(14) is an implicit equation for TAI . In terms of
TAI the jump ∆S is given by

∆S = f−1
2 (−g2 + [g2

2 − f2h2]1/2) (15)

Having calculated TAI and ∆S we can go back to eq.(5)
and calculate the finite smectic order ψ0(TAI) and the
layer wavelength q0(TAI) at the transition temperature.
Of course, one has to check that TAI is within the exis-
tence range (6) of the smectic phase, e.g. that the resulting
quantities ψ2

0 and q2
0 are positive. In that case there is al-

ways a direct AI transition possible within the framework
and assumptions of our mean-field model.

For T < TAI the smectic A minimum represents the
stable state. The isotropic state is then a metastable one,
and at even lower temperatures, it becomes unstable (a
local energy maximum).

Of course, the NI transition could come first before
TAI is reached. To prevent this, TAI has to be larger than
TNI = T ∗

NI + B2/(27Ca), where TNI is that temperature
for which FN = F0 with FN the free energy (2) taken at
the nematic solution (4).
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Appendix A

In the Ginzburg-Landau expansion (1) we have kept ho-
mogeneous terms that give rise in (2) to contributions
∼ Snψm

0 with n+m ≤ 4 only. If we then allow for gradient
terms up to the same S- or ψ0-order with two or four gradi-
ents (of φ), the following additions to (1) should be made:
(f1/2)QilQjl(∇iψ)(∇jψ

∗)+(e2/2)Qij(∇i∇lψ)(∇j∇lψ
∗)+

(d3/4)|∇iψ|4+(f3/2)QijQkl(∇i∇jψ)(∇k∇lψ
∗). There are

variants of these terms, e.g. ∼ QilQil(∇jψ)(∇jψ
∗), ∼

Qij(∇k∇kψ)(∇i∇jψ
∗)+c.c., or QijQkl(∇i∇kψ)(∇j∇lψ

∗),
which do not lead to any new contribution (compared to
the above ones) for the smectic A phase. In (2) the new
terms give rise to the additional free energy contributions

∆F =
1
2
f1S

2ψ2
0q2

0 +
1
2
e2Sψ2

0q4
0 +

1
4
d3ψ

4
0q4

0 +
1
2
f3S

2ψ2
0q4

0

(16)
which however, does not change qualitatively the results
(especially in sec.3) of this paper. This is most easily
demonstrated for the f1-contribution. Eq.(5) is slightly
changed into

ψ2
0 = − 1

β

(
α∗ − e∗SA +

3
2
δ∗∗S2

A + O(S3
A)

)
,

q2
0 = − 1

2b2
(b1 + e1SA + f1S

2
A + O(S3

A)) (17)

with δ∗∗ = δ∗−f1b1/(3b2). This leaves unchanged the form
of the free energy (13) relevant for the direct isotropic to
smectic A transition. Only the coefficients A∗, B∗ and C∗
are replaced by A∗∗, B∗∗ and C∗∗, respectively, for which
we find in detail

A∗∗ = A∗ +
1
3

α∗

β

b1f1

b2
(18)

B∗∗ = B∗ − e1f1

βb2

(
α∗ − 1

2
b2
1

b2

)
(19)

C∗∗ = C∗ +
2
9

f1

βb2

(
f1

(
α∗ − 1

2
b2
1

b2

)
+ 3b1

(
δ∗ − 2

3
e2
1

b2

))
(20)
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Thus, the nature of the direct transition as discussed in
section 3 is unchanged, only the dependence on the Ginz-
burg-Landau parameters becomes more complicated, when
higher order terms are included.
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