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Abstract. We discuss the symmetry properties and the macroscopic behavior of a nematic liquid crystal phase with
D2d symmetry. Such a phase is a prime candidate for nematic phases made from banana-shaped molecules where
the usual quadrupolar order coexists with octupolar (tetrahedratic) order. The resulting nematic phase is non-polar.
While this phase could resemble the classic D∞h nematic in the polarizing microscope, it has many static as well
as reversible and irreversible properties unknown to non-polar nematics without octupolar order. In particular, there
is a linear gradient term in the free energy that selects parity leading to ambidextrously helical ground states when
the molecules are achiral. In addition, there are static and irreversible coupling terms of a type only met otherwise in
macroscopically chiral liquid crystals, e.g. the ambidextrous analogues of Lehmann-type effects known from cholesteric
liquid crystals. We also discuss the role of hydrodynamic rotations about the nematic director. For example, we show
how strong external fields could alter the D2d symmetry, and describe the non-hydrodynamic aspects of the dynamics,
if the two order structures, the nematic and the tetrahedratic one, rotate relative to each other. Finally, we discuss certain
nonlinear aspects of the dynamics related to the non-commutativity of three-dimensional finite rotations as well as other
structural nonlinear hydrodynamic effects.

1 Introduction

Fel [1,2] was the first to consider tetrahedral (octupolar) order,
Tijk, in the context of liquid crystals. He considered the regu-
lar tetrahedron which belongs to the symmetry group Td [3–5].
Under the parity operation, r → −r, Tijk transforms to−Tijk
(fig. 1). An important implication of this observation is that at a
tetrahedratic-isotropic liquid phase transition, Tijk and −Tijk
simultaneously condense from O (3), the usual isotropic liq-
uid. On the other hand, nematic (quadrupolar) order, Qij well-
known for liquid crystals [6, 7], introduces one (or two) pre-
ferred orientations thus breaking rotational symmetry at the
isotropic to nematic phase transition. Here we are interested in
a phase, where both, tetrahedral and nematic order coexist, in
particular aD2d-symmetric phase (D2d) (calledNT in ref. [8])
where the uniaxial director, n, is along one of the 4̄ axes of the
tetrahedral structure (e.g. the z axis in fig. 1).

While we are studying here a D2d nematic, which is non-
polar, there are many other options for the macroscopic and
molecular symmetries of unconventional nematic phases (for a
recent review we refer to ref. [9]). Another outstanding candi-
date for the superposition of quadrupolar and octupolar order is
a phase with C2v symmetry. Such a phase would be polar and
can lead to ferroelectric and/or antiferroelectric order. In the
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Fig. 1. (Colour on-line) Tijk (left) and its inverse −Tijk (right). The
tetrahedron, Td, is described by four unit vectors, nα (α = 1, 2, 3
and 4) to alternate corners of a cube: Tijk =

∑4
α=1n

α
i n

α
j n

α
k . The

spatially inverted system is equivalent to a π/2 rotation about (here)
the y axis making this axis (and generally also the x and z axis) a 4̄
improper rotation axis with S4 the appropriate symmetry element of
Td [4, 14].

context of liquid crystal phases formed by bent-core molecules
it has been suggested first in the context of fluid smectic phases
in ref. [10].

In contrast to optically isotropic liquid crystals with Td
symmetry, D2d is (locally) optically uniaxial and in contrast
to uniaxial nematics with D∞h symmetry, D2d is not inversion
symmetric. The question is then, how can we differentiate this
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D2d phase from other non-polar biaxial or uniaxial nematics
and from the Td phase?

In the polarizing microscope, a homogeneously oriented
D2d could resemble the usual uniaxial nematic, D∞h. But, the
full structure, nematic and tetrahedratic, breaks continuous ro-
tational symmetry in all three directions. In particular, there are
three hydrodynamic degrees of freedom (Goldstone modes) as
in biaxial nematic phases [11, 12]. Two of these modes are as-
sociated with rotations of n about the two axes ⊥ n and the
third with rotations around n.

Octupolar order introduces several effects unknown in
usual nematics. For example, we showed that Tijk has re-
versible couplings between velocity gradients (deformational
flows), electric fields and gradients in concentration, and tem-
perature giving rise to stresses [13]. There are also additional
static and dissipative effects not known in usual nematics which
have only an axis of orientation [15]. These include irreversible
coupling terms between director rotations on the one hand and
electric fields and temperature and concentration gradients on
the other. In addition, there are static contributions coupling di-
rector deformations to density, concentration and temperature
variations unknown in quadrupolar nematics [15]. All these ef-
fects can be checked but so far have not been, perhaps, because
of material scarcity.

As we have pointed out earlier [16–18], symmetry allows a
linear gradient term in the free energy, Tijk∇kQij , when both
types of order are present. Both ∇k and Tijk are odd under
parity so the product, Tijk∇kQij , conserves parity. Put simply,
coupling spatial gradients in an order parameter that conserves
parity with an order parameter that does not provide a mecha-
nism for local parity selection. In the following we will show
that for the D2d phase this linear gradient term allows for an
ambidextrous helical ground state structure, where both types
of handedness occur equally likely, since the tetrahedral struc-
ture and its inverted variant are present simultaneously, if there
is no preferred parity due to external fields or surfaces. Opti-
cally, this would resemble a cholesteric phase.

The behavior in an electric field gives rise to additional
possibilities to distinguish a D2d from usual nematics. First,
a D2d phase allows second harmonic generation and novel
electro-mechanical effects as it breaks parity symmetry. Sec-
ondly, it has an unusual reorientation behavior: Below a thresh-
old field, the director is oriented in the usual uniaxial nematic
way. Above this threshold value the director turns away contin-
uously from its original orientation to a direction oblique to the
field, a phenomenon unknown in a usual uniaxial nematic.

D2d is a good candidate for nematics formed by banana-
shaped molecules. Recently [19], an isotropic to isotropic
phase transition has been observed above a nematic phase
formed by banana-shaped molecules. In the context of D2d,
the following scenario comes to mind. The higher tempera-
ture isotropic phase is O(3) (the usual isotropic phase), the
lower temperature (optically) isotropic phase is Td [1, 2] (B7
as in [20–23]), and the (optically) uniaxial nematic phase is
D2d.

Generally a director, n, can be uniformly oriented between
parallel glass plates, either parallel or homeotropic. Generally,
also the tetrahedral vectors could be oriented by boundaries,
however, the coexistence of Tijk and its inverse cannot lead to

a homogeneous structure. In addition, the director surface ori-
entation and the surface orientation of (one of) the tetrahedral
vectors (parallel or antiparallel) are incompatible. Only if the
nematic surface ordering is dominating, a homogeneous struc-
ture can be expected. But similar to B7 which has single parity
traveling domains that grow or shrink but never coarsen, alter-
nating parity convection rolls in D2d can’t coalesce or annihi-
late with each other [24].

In sect. 2 we start with an overview on this topic and how
it is related to current experiments and to previous theoretical
work (sect. 2.1). Then we give the hydrodynamics of a Td phase
(not given previously in full completeness), in order to set the
notation and to facilitate comparison with the D2d phase (sect.
2.2).

In sect. 3, the main body of this paper, we derive the un-
usual linear hydrodynamics of the D2d phase (sects. 3.1 and
3.3) and show how this is different from the familiar uniax-
ial or tetragonal biaxial nematic case. The new hydrodynamic
variable (compared to uniaxial nematics), rotations about the
nematic director, is discussed in detail in sect. 3.5. The com-
plexity of the D2d phase allows for the possibility that the low-
est energy state is an inhomogeneous one, in particular a helical
state, where the helical sense can be of either handedness (am-
bidextrous chirality, sect. 3.2). The very unusual orientation ef-
fects of a D2d phase in an external electric field are elaborated
in sect. 3.4. In addition, we describe the non-hydrodynamic as-
pects of the dynamics, if the two order structures, the nematic
and the tetrahedratic one, are rotating relative to each other.
Relative rotations, important in other liquid crystalline systems,
may play a role when different kinds of external fields or dif-
ferent types of boundary conditions are present. Finally, in sect.
4, we discuss nonlinear aspects of the dynamics related to the
non-commutativity of three-dimensional finite rotations as well
as other structural nonlinear hydrodynamic effects.

2 Review of Previous Results

2.1 General

A current fundamental question in liquid crystal and soft mat-
ter research is to what extent polar order and fluidity can
co-exist. To date, no examples of polar order and 3D fluid-
ity are known. In [10, 25–27], we showed that 2D fluidity in
biaxial smectic layers was sufficient to stabilize polar order.
Since the prediction and demonstration [28–30] of the exis-
tence of novel liquid crystal phases made of bent-core and
banana-shaped molecules, this issue has drawn considerable at-
tention. Subsequently, it was found that there are many smec-
tic phases formed by banana-shaped molecules revealing anti-
ferroelectric order [21, 22, 26, 27, 31–36].

Fairly early on, symmetry arguments were given [37] that
the low symmetry of the bent core molecules allowed nematic
phases not only of the usual uniaxial non-polar nematic type as
found by [38, 39], but also biaxial phases of the orthorhombic
type [11, 12] and that even polar biaxial nematic phases were
possible. While polar uniaxial nematic phases for which the
polar direction is parallel to the usual nematic director have
been investigated for about two decades [40], interest in these
systems has recently become more intense in connection with
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polypeptides showing polar order [41–44] as well as for the
field of active driven systems in actin filament gels [45]. The
macroscopic dynamic behavior of such phases has been given
[46, 47].

Very recently several studies of the physical properties of
nematic phases formed by banana-shaped molecules have re-
vealed properties unknown from usual uniaxial nematics in-
cluding giant flexoelectricity [48], nonstandard electroconvec-
tion [24] as well as unusual behavior near the transition from an
optically isotropic phase to a nematic phase [19,49]. These ex-
perimental results underscore all previous conclusions that liq-
uid crystal phases formed by banana-shaped molecules are dif-
ferent from those obtained from rod-like or disc-like molecules.
Previously it had been shown that one can obtain chiral do-
mains of both hands for nematic phases formed by achiral
molecules [50, 51] and also the induction of a liquid crystal
phase in an optically isotropic phase by an external electric
field showing an upward shift in the phase transition temper-
ature by up to ten degrees with a shift, which varied linearly in
the applied electric field [52].

After liquid crystalline phases composed of banana-shaped
molecules were found and experimentally characterized, the in-
fluence of tetrahedratic order on the physical properties of such
LC phases was theoretically investigated considering phase
transitions [8, 53] and the coupling between flow and various
external fields in an optically isotropic situation [13]. More re-
cently, these early studies were complemented by the analysis
of the coupling terms between quadrupolar and octupolar or-
der [15–18] elucidating in particular the role played by a linear
gradient term between the two types of order and its physi-
cal consequences [16–18]. The latter include the appearance
of spontaneous chiral domains of either hand (ambidextrous
chirality), the formation of spontaneous defect-free splay-bend
textures [18], which could play a key role in the explanation of
the textures observed for Weissflog’s B7 phase [21, 22, 28, 54]
as well as more recent results on electro-convection in banana
nematics [24]. An explanation for the observed shift in the liq-
uid crystal - optically isotropic phase transition temperature
[52] has also been suggested [17] assuming that the ‘isotropic’
phase is actually tetrahedratic: in this case a tri-linear static
coupling in the generalized energy of an external electric field
and the quadrupolar as well as the octupolar order parameter
leads to a shift of the phase transition temperature, which is
linear in the electric field, E.

In the previous theoretical studies we considered the un-
locked case, where the nematic director and the tetrahedral
structure were allowed to rotate freely with respect to each
other; this is very likely a good approximation close to a phase
transition were the order parameters are still small. Far inside
a given phase, a Ginzburg-Landau argument reveals that there
are two thermodynamic phases, were the two types of orienta-
tion are locked: Either the director is along one of the 3-fold
axes (the tetrahedral vectors) or is along one of the improper 4̄
axes. The former case has C3V symmetry and is a polar, trig-
onal biaxial nematic with macroscopic properties resembling
optically the case of a uniaxial polar nematic. Such a type of
symmetry is also obtained, if one allows the tetrahedral struc-
ture (of the Td phase) to deform due to a strong external electric
field. In this paper we will take the tetrahedral structure as rigid

Fig. 2. Left: The 4 tetrahedratic vectors of Eq.(1) are shown in a pro-
jection onto the x/y plane. Those vectors pointing out of (into) the
drawing plane are red (blue) and decorated by a circle (aster); the z-
axis sticks out. Right: The spatially inverted system equivalent to a
π/2 rotation (about the z axis).

and consider only the D2d phase, where the director is along
the improper 4̄ axis and the nematic and tetrahedral structures
are rigidly locked. Only in sect. 3.6 we allow for a finite, but
large energy for rotations of the tetrahedral structure relative to
the nematic director. First we start with the Td hydrodynamics.

2.2 Tetrahedratic Hydrodynamics

The tetrahedratic phase is characterized by the existence of
the octupolar order parameter T ≡ Tijk = Σ4

α=1n
α
i n

α
j n

α
k

expressed by the 4 unit vectors, nα, with α = 1, 2, 3 and 4
defining a tetrahedron. T is fully symmetric in all three indices
and odd under parity, since the nα’s are vectors, or, in physi-
cal terms, are polar. Only 2-, 3- and 4-fold symmetry axes are
allowed by the tetrahedratic Td symmetry. The 4-fold symme-
try axes are improper (accompanied by an inversion of their
direction), thus destroying inversion symmetry. There are two
mirror planes defined by two non-adjacent tetrahedral vectors,
thus excluding chirality. The orientation of the tetrahedron in
laboratory space is arbitrary, but the matrix representation

Tijk =
1√
3

 1 1 −1 −1
1 −1 1 −1
−1 1 1 −1

 (1)

is very convenient for the discussion of the D2d phase.The
columns in the matrix Eq.(1) are the four unit vectors with
their x, y, and z components in the first, second and third row,
respectively. This is shown in fig. 2 on the left. The spatially in-
verted system, where all signs in Eq.(1) are reversed, describes
an orientation that is different from the original one, but com-
pletely equivalent. This is the meaning of the statements that
the D2d phase lacks inversion symmetry, or inversion symme-
try is spontaneously broken. This is shown in fig. 2 on the right.
Obviously, an inversion is equivalent to a π/2 rotation of the
structure about the z-axis. Performing simultaneously, inver-
sion with a π/2 rotation, leaves the structure invariant render-
ing the z-axis an improper 4̄ axes.

Generally the order parameter strength T shows a relax-
ational type of dynamics, which is relevant close to a phase
transition or for defect topology to be discussed separately [54].
Consequently, throughout this paper it will be treated as a con-
stant T0. Formally, the two possibilities, original and inverted
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orientation, can be dealt with by always using Eq.(1), but as-
signing a positive and negative sign to T0, respectively. The ab-
sence of a T0 → −T0 invariance is then the manifestation of the
absence of inversion symmetry. The sum of the 4 tetrahedron
vectors vanishes, Tijj = 0, making sure that no polar order is
present. There is also no quadrupolar (nematic) order present,
since TiklTjkl = α δij , which is isotropic (α = (32/27)T 2

0 ).
Changes of the order parameter δTijk = Tijk − T eqijk

from its equilibrium value are the candidates for being vari-
ables. δTijk is restricted by the special properties of Tijk dis-
cussed above leading to the requirements δTijj = 0 and
δTiklTjkl + TiklδTjkl = 0. Thus, we are left with three (prop-
erly normalized) hydrodynamic variables

δΓi ≡
1

4α
εipqTpkl δTqkl (2)

describing the 3-dimensional rotations of the tetrahedratic
structure and reflecting the 3-fold broken rotational symmetry.
Equation (2) is not integrable and δΓi is not a vector, nor are its
components rotation angles (except in linear approximation).
Thus, two subsequent changes cannot be interchanged

(δ1δ2 − δ2δ1)Γi =
1

2α
εipq(δ1Tpjk)(δ2Tqjk)

= 2εipq(δ1Γp)(δ2Γq) (3)

because finite 3-dimensional rotations in space do not com-
mute. This is similar to e.g. rotations of the preferred direc-
tion in superfluid 3He-A (Mermin-Ho relation [55]), rotations
in biaxial nematics [11, 12] or rotations of a biaxial nematic
structure for models of the core of neutron stars [56]. Equation
(2) can be inverted to give δTqkl = 2 εipqTpkl δΓi.

In a linearized theory, where only infinitesimal rota-
tions are considered, the hydrodynamic variable δΓ lini ≡
1/(4α)εipqT

eq
pkl δTqkl is a true vector and (δ1δ2 − δ2δ1)Γ lini =

0.
Since homogeneous rotations of the tetrahedratic structure

must not cost energy, only gradients of the rotations enter the
(gradient) free energy

fg =
1

2
KΓ
ijkl(∇jΓi)(∇lΓk) (4)

where

KΓ
ijkl = KΓ

1 (δijδkl + δilδjk) +KΓ
2 δikδjl

+KΓ
3 TjlpTikp . (5)

A possible fourth term∼ (TijpTklp+TjkpTilp) is not indepen-
dent, but apart from a surface energy contribution, equivalent
to a certain linear combination of the terms kept in Eq.(5).

The dynamic equation is a simple balance equation

∂

∂t
Γi + Yi = 0 (6)

where Yi = Y Ri + Y Di contains reversible crosscouplings to
the velocity v,

Y Ri = +vj∇jΓi −
1

2
ωi +

1

2α
εipqTpjkTqlkεmjlωm . (7)

Here, ωi = (1/2)εijk∇jvk is the vorticity.
In Eq.(7) these couplings arise from the behavior of tensors

under rigid rotations, in particular of Tijk. The term ∼ vi∇i
can be viewed as the transport part of the time derivative.
All these terms are universal and do not depend on material
properties. If linearized, the reversible current simplifies to
Y Ri = −ωi showing that δΓi does not transform like a vec-
tor under rotations, but resembles the case of director dynam-
ics in biaxial nematic systems which also has non-commuting
variables. Note that there is, in contrast to the nematic case,
no phenomenological coupling to deformational flow, Aij =
(1/2)(∇jvi + ∇ivj) of the form Y Ri = λijkAjk, since the
flow alignment tensor λijk should be even under parity and
thus cannot be proportional to Tijk. The symmetry of Td does
not allow a coupling to shear flow.

The entropy production due to the reversible rotational flow
contributions to Y Ri in Eq.(6) is zero, as required by thermo-
dynamics, due to the requirement that the energy is a scalar
quantity (cf. the procedure described in sec.2 of [57]) with the
result that the stress tensor does not contain a contribution from
δΓi. The transport term in Eq.(7) is balanced, together with all
transport terms in the other dynamic equations, by the pressure
in the stress tensor [57].

The dissipative current only contains a self-coupling term

Y Di = − 1

γ1
hΓi

which is governed by the material dependent ‘rotational vis-
cosity’, γ1. The diffusion of δΓi is due to its thermodynamic
conjugate quantity, the ‘molecular field’

hΓi ≡
(

∂

∂Γi
−∇j

∂

∂∇jΓi

)
f

where f is the sum of all energy contributions. Clearly, if no
gradients are present, hΓi is zero demonstrating the hydrody-
namic nature of δΓi. However, for energy minimum, one needs
to balance torques i.e. hΓ ×Eα = 0.

There are no further couplings of the rotations δΓi to other
variables (like mass density, energy density) and vice versa.
Due to the lack of flow alignment, there are no ”back flow”
effects, i.e. no coupling of the stress tensor to δΓi. However,
there are several additional observables and new effects in the
hydrodynamics of the usual variables because of the existence
of Tijk, which we have described in [13].

It is well known [1, 2] that an electric field E orients the
tetrahedral structure due to the generalized dielectric energy,

fE = −ζ
E

2
TijkEiEjEk . (8)

This energy is minimal, if one of the tetrahedral vectors (a 3-
fold symmetry axis, say n1) is parallel or antiparallel to E
depending on the sign of ζE . In this geometry Tijk takes the
form [17]

Tijk =
1

3

0 −
√

2 −
√

2 2
√

2
0 −
√

6
√

6 0
3 −1 −1 −1

 . (9)
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For deviations from this ground state there is an energy
penalty

f
(1)
E =

16

9
|ζET0|E3(δΓ⊥)2 (10)

with δΓ⊥ = {δΓx , δΓy} and the z-axis defined by the external
field. Thus, a rotation of Tijk about the field axis, δΓz , does
not cost energy and this rotation is still hydrodynamic. The two
other rotations, δΓx and δΓy , are non-hydrodynamic and relax
to zero even in the homogeneous limit. Obviously, the external
fieldE breaks the appropriate rotational symmetries externally.
Note that the orienting free energy is cubic in the field strength
E = |E| and the total energy of the system decreases [17].

There is also a flexoelectric type of free energy

f
(2)
E = e1EjEk∇iTijk =

32

9
e1T0E

2 (curlΓ⊥)z (11)

which is quadratic in E and involves ∇xΓy − ∇yΓx in the
geometry chosen. In addition, there is an energy contribution
linear in the field, but with second order gradients of δΓi

f
(3)
E = e2Ei∇j∇kTijk

= −4

9
e2T0E

(
4∇z[∇yΓx −∇xΓy]

+ 2
√

2[∇2
y − ∇2

x]Γy − 4
√

2∇x∇yΓx
)

+O
(
(∇Γ )2

)
. (12)

A magnetic field H cannot orient the tetrahedral struc-
ture, since an energy contribution ∼ TijkHiHjHk is impos-
sible because magnetic fields changes sign under time rever-
sal while energy does not. What is possible however is a term
ζEHTijkEiHjHk. But even for crossed fields,E ⊥H , no ori-
entation is fixed in the plane perpendicular to the electric field,
since the ζEH term only involves (δΓ⊥)2, similar to Eq.(10).
Orientation by an external magnetic field can only be provided
by higher order terms, e.g. quadratic in Tijk and fourth order
in Hi, which however, are very likely rather small. Anyhow,
terms of fourth order (in the magnetic or the electric field) are
known to orient phases with cubic symmetry, as is known for
example for cholesteric blue phases in electric fields.

Comparing the Td phase with an isotropic liquid, we find
material tensors of third or higher rank are more complicated
(have more independent components), e.g. the viscosity ten-
sor contains three viscosities rather than two. Second, there
are completely new cross couplings between the standard hy-
drodynamic variables: density, energy density and density of
linear momentum, in particular a reversible dynamic coupling
between shear and elongational flow on the one hand, and tem-
perature, concentration gradients and electric fields on the other
[13]. Finally, the existence of the tetrahedral structure gives rise
to additional hydrodynamic variables. The orientation of this
structure in space is arbitrary, and any rotation of it is a Gold-
stone variable associated with a spontanteously broken contin-
uous symmetry. This is analogous to biaxial nematic phases,
where three rotational hydrodynamic degrees of freedom are
also present. As the rotations of the tetrahedral structure are
not optically observable in Td but are in D2d, we discussed this
aspect only very briefly in [13] for Td and expanded on this
topic in more detail for D2d in sect. 2.2.

3 Linear Hydrodynamics of the D2d phase

We model the D2d phase as a tetrahedratic phase that has ac-
quired an additional uniaxial nematic order, Qij . Here, Qij is a
traceless symmetric second rank tensorQij = S0

2 (ninj− 1
3δij)

with the nematic order parameter strength S, which we will
take to be constant (S0 = 1) (since its dynamics is fast and
non-hydrodynamic), and the director n [6,7]. The latter can be
used as a unit vector, n2 = 1, under the proviso that all equa-
tions are invariant under the replacement of n with −n. In the
D2d phase the director is oriented along one (improper) 4-fold
axis of the tetrahedratic structure. Denoting this axis, which is
still a 4̄ symmetry axis, as the z-direction (in fig. 1), the ori-
entation of the tetrahedratic vectors is given by Eq.(1), where
the orientations of the two former 4̄ axes of the tetrahedratic
phase are along the x and y direction. The director n makes an
angle of ΘT /2 or π − ΘT /2 with the tetrahedratic directions
nα, where ΘT is the tetrahedratic angle with cosΘT = −1/3.
All 3-fold symmetry axes (of Td) are removed by the existence
of the nematic director. The remaining 2-fold, the (improper)
4-fold symmetry axis, and the nematic orientation all lie at the
intersection of the two vertical symmetry planes, which guar-
antee the absence of (usual) chirality.

As in the tetrahedratic phase there are three rotational sym-
metry variables, which are here the rotations of the rigidly com-
bined Tijk and Qij structure. In this section we will not con-
sider the non-hydrodynamic relative rotations among them (but
see sect. 4). The common existence of octupolar and quadrupo-
lar order does not imply the D2d phase to be polar (i.e. there is
no polar vector present), since TijkQjk = 0 = Tijknjnk for
the equilibrium structure.

The important and qualitatively new feature is that rotations
of the director are directly observable in the microscope. Those
of the tetrahedratic structure are not but can be inferred from
observations of a rigidly attached n.

There are only two rotations of n, since n·δn = 0. Instead
of using δn one could also use δΓ to describe those rotations,
where δΓi ∼ (n×δn)i for i = {x, y}. The third rotation, about
n, is described by δΓz or more generally, by n·δΓ . Since this
variable is not detectable optically and is only slightly coupled
to the other hydrodynamic variables, we will first disregard it
and discuss its behavior at the end of this section. Thus, we are
left with a system that has the same number and type of vari-
ables as a conventional uniaxial nematic. The difference is that
the D2d phase is not transversely isotropic but has a structure
perpendicular to n expressed by Tijk which does not conserve
parity.

This difference to conventional uniaxial nematics will be
investigated in detail next. The case of external electric and
magnetic fields is dealt with, separately. We also restrict our-
selves first to a linear hydrodynamic description, then describe
nonlinear effects in sect. 4.

3.1 Static Properties

In addition to the rotational degrees of freedom described
above and for which we take the nematic ”language” δni, there
are those variables characteristic of an isotropic fluid, namely
the mass density ρ, entropy density σ, and momentum density
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g. The statics is described by setting up an energy density func-
tion ε = ε0 + εg + εl + εc + εΩ + εJ , where ε0 is the part of
isotropic liquids. The gradient free energy

εg =
1

2
Kikjl(∇ink)(∇jnl) (13)

contains 4 Frank-type orientational elastic coefficients

Kijkl = K3ninjδ
tr
kl + (K1 − 2K2)δtrikδ

tr
jl

+K2(δtril δ
tr
jk + δtrij δ

tr
kl) +K4npnqTijpTqkl . (14)

In Eq.(14) as well as in the following equations, we have ex-
panded into ni, the transverse Kronecker delta, δtrij = δij −
ninj , projecting onto the plane perpendicular to ni, and Tijk
making sure simultaneously that only independent terms are
taken into account. In the limit of a usual uniaxial nematic this
expression reduces to the Frank free energy with the Frank con-
stants splay, bend and twist. In linear order Tijk is the equilib-
rium one given e.g. by Eq.(1). In the D2d phase all 4 Frank-
type coefficients depend on the degree of tetrahedratic order,
T0, one of them vanishing at the transition to the (uniaxial) ne-
matic phase.

As required, also the new term (∼ K4) contains only gra-
dients of the director with ni∇jni = 0, in particular the com-
bination (∇xnx)(∇yny).

There is also a linear gradient energy

εl = ξ Tijk ni∇jnk (15)

which is related neither to linear splay,∇xnx +∇yny (present
in polar nematics), nor to linear twist,∇xny−∇ynx (present in
chiral nematics), but involves the combination ∇xny +∇ynx.
As it is well known from cholesteric liquid crystals [7], po-
lar nematics [40, 46, 58] and from polar cholesterics [54] the
appearance of linear gradient terms in the deformation energy
of a director field signals the possibility of an inhomogeneous
ground state. Clearly this is also an option for the macroscopic
behavior of the D2d-phase described here and will be discussed
in the next subsection.

Finally there are cross-couplings between director defor-
mations of the ξ -type (Eq.(15)) and all the scalar hydrody-
namic variables

εc = Tijkni∇jnk(ξρδρ+ ξσδσ) (16)

unknown for usual nematics. Analogous terms for possible
additional scalar variables, like concentration variations δc in
mixtures, or variations of the order parameters δT or δS, can
be written down straightforwardly. These terms resembles the
static Lehmann terms in cholesteric liquid crystals [59], al-
though here they do not involve a simple rigid rotation of the di-
rector structure. The contribution εΩ containing the third sym-
metry variable associated with the broken symmetry around n
and εJ related to relative rotations will be given and discussed
below.

Instead of using ni, δtrij = δij−ninj and Tijk, one can also
express the structure of the Frank tensor (as well as those of
other property tensors) by a triad of orthogonal unit vectors ni,
mi and li as it has been done for orthorhombic biaxial nematics

[11]. Thereby making contact with the description given in ref.
[8] Tijk reads

Tijk = T0(nimj lk + niljmk +miljnk

+minj lk + linjmk + limjnk) (17)

and the K4 term in Eq.(14) is given by K4T
2
0 (milj +

limj)(mkll + lkml).

3.2 Ambidextrous Chirality

The linear gradient energy contribution Eq.(15) allows for a
non-homogenous ground state. Indeed, it is straightforward to
show that a helical state has a lower free energy than the ho-
mogeneous state. In this helical state the director (and thus the
4̄ axis of the D2d phase) rotates about one of the other 4̄ axes
of the pure tetrahedratic phase. These are the x or y axis in
the geometry of Eq.(1), where the director is along the z axis.
Choosing the x axis as helical axis for definiteness, the director
(and the 4̄ axis) is given by

ni = δiz cos(q0x) + δiy sin(q0x) (18)

while for the tetrahedral vectors one finds

1√
3

 1 1 −1 −1
C − S −C + S C + S −C − S
−C − S C + S C − S −C + S

 (19)

with C = cos(q0x) and S = sin(q0x).
This state has a free energy, which is by

∆ε =
1

2

ξ2T 2
0

K2
(20)

smaller than that of the homogeneous state, independent of the
sign of the modulus, ξ, of the linear gradient term and that of
T0. The sign of ξT0, however, governs the rotation sense of
the helix, since for the helical wave vector one gets, for the
geometry chosen,

q0 = −ξT0
K2

(21)

leading to a left- (right-) handed helix for ξT0 > 0 (< 0). The
sign of ξ is fixed for a given material (and, of course, not re-
lated to molecular chirality because there is none), while the
sign of T0 depends on the tetrahedratic orientation (original or
inverted). In fig. 3 it is shown, how the rotation sense changes
when going from the original (left) to the inverted (right) sys-
tem, equivalently, going from T0 to −T0. For a rotation about
the y axis (the other 4̄ axis of the pure tetrahedratic state) the
sequence A→ z → B in fig. 3 constitutes a left (right) helical
sense the original (inverted) system, just opposite to the case
of a rotation about the x-axis, and q0 = ξT0/K2. The energy
reduction is still given by Eq.(20).

On the contrary, a rotation about a direction that bisects the
x and y (or -y) axes (the two extra 4̄ axes of the pure tetra-
hedratic state), does not lead to an energy reduction due to the
linear gradient term, and no helical sense can be defined (fig. 4).
Of course, a rotation about the director, n, (the z-axis) does not



H.R. Brand and H. Pleiner: Macroscopic Behavior of Nematics with D2d Symmetry 43

Fig. 3. Projection of the D2d structure onto the y/z plane. The director
n is along the z axis, the x axis sticks out of the drawing plane, and
circles and asters are as in fig. 2. A rotation about the x axis with the
sequence A → z → B constitutes a right (left) helical sense for the
original system on the left (inverted system on the right), while the
sequence B → z → A gives the opposite rotating sense.

Fig. 4. Projection of the D2d structure onto the b/z plane (with b =
ex+ey). The director n is along the z axis; circles and asters as in fig.
2. A rotation about the axis perpendicular to the drawing plane does
not allow the identification of any rotation sense, (since the sequence
b → z → b is identical to z → b → z) neither does a rotation about
the b axis.

lead to an energy reduction as the linear gradient term makes
no contribution.

In a spontaneous formation of the D2d phase helices of dif-
ferent rotation sense and about different orthogonal axes might
occur at different places of the sample, since all the possibili-
ties discussed above are equally likely. This is a manifestation
of ambidextrous chirality [35]. Where regions of different he-
licity or different orientation of the helical axis meet, there are
defects (distortions of the D2d structure), which cost energy
thus reducing the gain due to the helix formation.

We would like to emphasize that the two senses of rota-
tion are exclusively due to the structure of the linear gradient
term (Eq.(15)), which is specific to systems showing quadrupo-
lar and octupolar order simultaneously. Therefore the ambidex-
trous chirality arising here is qualitatively different from the
ambidextrous chirality in the CB2 (B2) phase, where the ener-
getically equivalent left and right handed helices are due to the
tilt of the tetrahedratic structure to two different sides [26, 27].
Of course, in usual chiral liquid crystals such as cholesteric
liquid crystals, for which the molecular chirality is transferred
to a large-scale, collective level, only one kind of handedness
results as the energetic minimum.

If in a D2d phase a pure helical state (with a single helicity
and single helix orientation) can form over a sufficiently large
domain, it has a lower energy compared to the homogeneous
state. Averaging such a structure over a length scale large com-
pared to the pitch, the resulting symmetry of the phase is that
of a smectic A phase, since all informations about the helix are
eliminated (since there is no molecular chirality).

However, a description on the global level, i.e. on length
scales much larger than the pitch, loses information of the spe-
cial properties on length scales smaller than the pitch. There-
fore, we will use the local description in the following. This
means, we assume locally D2d symmetry, which is tetrago-
nal biaxial nematic-like, but with the ξ-term in the free energy
(Eq.(15)) due to the lack of inversion symmetry. This procedure
is frequently used in cholesterics, which are locally described
as nematics with the additional linear twist energy term. If the
D2d phase is in a homogeneous state, the linear gradient free
energy term always leads to the tendency of forming localized
helical domains.

3.3 Dynamic Properties

In the D2d phase the structure of the director dynamics is the
same as in uniaxial nematics. There is flow alignment, the
coupling to deformational flow, and the appropriate back flow
terms in the stress tensor, as well as director relaxation or dif-
fusion due the molecular field hi = δε/δni giving rise to one
reversible and one irreversible transport parameter [60–63].

The conserved variables generally obey conservation laws
involving currents, e.g. (∂ρ/∂t) +∇iji = 0 for the density or
(∂gi/∂t) + ∇jσij = 0 for the momentum density. There are
structurally new couplings in the currents of charge, entropy
(or heat) and concentration to deformational flow

je,Ri = · · ·+ (Γ11δ
tr
li + Γ12 nlni)TljkAjk (22)

jσ,Ri = · · ·+ (Γ21δ
tr
li + Γ22 nlni)TljkAjk (23)

jc,Ri = · · ·+ (Γ31δ
tr
li + Γ32 nlni)TljkAjk (24)

not present in nematics, but found also in the tetrahedratic
phase. In the latter case, there is only one reversible transport
parameter per current, while here there are two, Γx1 and Γx2,
due to the anisotropy. The physical meaning of these terms has
already been discussed extensively in [13], e.g. a shear flow
leads to an electric, heat and concentration current. In a ho-
mogeneous D2d state the induced currents are perpendicular to
the shear plane defined by the deformational flow Aij . Since
T0 can have either sign (for the original and inverted tetrahe-
dratic order), the induced currents will point in opposite direc-
tions, what could be viewed as induced ambi-polarity. If both
variants are present in different parts of the same sample, this
ambi-polarity shows up directly. For a pure helical state (along
the x axis) the induced currents are modulated by the factor
cos(2q0x). However, a strong flow destroys the helix due to
the flow alignment effect acting on the nematic part of the D2d
structure.
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The counter terms guaranteeing zero entropy production
are in the stress tensor

σRij = · · · − (Γ11δ
tr
lk + Γ12 nlnk)TijkEl

− (Γ21δ
tr
lk + Γ22 nlnk)Tijk∇lT

− (Γ31δ
tr
lk + Γ32 nlnk)Tijk∇lc (25)

and describe, for a homogeneous state, induced stresses in the
plane perpendicular to temperature and concentration gradients
or an electric field.

In the dissipative parts of the currents there are the follow-
ing structurally new couplings of electric fields, gradients of the
temperature, concentration, and W , the thermodynamic conju-
gate to the modulus S, to the nematic molecular field hi

R ∼ (ΨEEk+ΨT∇kT+Ψ c∇kc+ΨS∇kW )Tijknjhi . (26)

We note that the opening of these new dissipative channels are
of the same order as director diffusion R ∼ γ−11 h2i and, for ex-
ample, thermal conductivity, R ∼ κij(∇iT )(∇jT ), or electric
conductivity, R ∼ σEijEiEj in usual uniaxial nematics. Phys-
ically speaking, they are similar in structure to the Lehmann
effect in cholesteric liquid crystals [59]. In cholesteric liquid
crystals the wave vector of the helix, a pseudoscalar, q0, guar-
antees the appropriate behavior of the dissipation function un-
der parity while here it is Tijk. Thus a nematic with octupo-
lar order can generate director rotations under external fields
including electric fields, temperature and concentration gradi-
ents.

The viscosity tensor is more complicated and has one coef-
ficient more than in the nematic case. The viscous part of the
entropy production reads

2R = νikjl(∇ivk)(∇jvl)
= ν1

[
(∇xvx)2 + (∇yvy)2

]
+ ν2

[
(∇xvy)2 + (∇yvx)2

]
+ 2ν3

[
(∇xvz)2 + (∇yvz)2 + (∇zvx)2 + (∇zvy)2

]
+ ν4 (∇zvz)2 + 2ν5 (∇zvz)(∇yvy +∇xvx)

+ 2ν6 (∇yvy)(∇xvx) (27)

with the viscosity tensor

νikjl = (ν1 − 2ν2)δtrikδ
tr
jl + ν2(δtrij δ

tr
kl + δtril δ

tr
jk)

+ ν3(δtrijnknl + δtril njnk + δtrklninj + δtrjkninl)

+ ν4ninjnknl + ν5(δtriknjnl + δtrjlnink)

+ ν6npnqTpijTqkl (28)

containing 6 viscous coefficients in accord with general
symmetry considerations [64]. Possible additional terms
∼ δtrpqTpijTqkl, ∼ npnq(TpikTqjl + TpilTqjk), and ∼
δtrpq(TpikTqjl + TpilTqjk) are not independent, but equivalent
to certain linear combinations of the terms kept in Eq.(28). In
the D2d phase all six viscous coefficients depend on the degree
of tetrahedratic order, T0, one of them vanishing at the transi-
tion to the (uniaxial) nematic phase.

3.4 External Field Effects

It is well known that external fields have an orienting effect on
liquid crystalline phases, in particular the dielectric anisotropy

orients the director of the nematic phase, while the tetrahedratic
structure is aligned by a cubic generalization of the dielectric
energy, as discussed above. The homogeneous part of the field-
induced free energy reads

εE = − ε̃a
2
ninjDiDj −

ζ̃E

2
TijkDiDjDk

+ (ζEH1 Tljkδ
tr
il + ζEH2 Tljkninl)DiHjHk . (29)

There is only one coefficient in ζ̃E due to the high symmetry
of this term; we note, that the contribution ∼ ζ̃E gives rise
to second harmonic generation and can thus serve as a useful
experimental tool to distinguish a D2d phase from a usual uni-
axial nematic phase. The term ∼ TijkninjDk, which is linear
in the displacement field, Di, is zero in the D2d phase, because
(n · nα)2 = 1/3 for any α and

∑4
α=1 n

α = 0. The terms
∼ DH2 have no analog in usual uniaxial nematics, but only in
the tetrahedratic Td phase where one contribution exists. There
is no need to incorporate fourth order terms in εE to guarantee
convexity, since we study external fields here.

We have used the electric displacement field D rather than
the electric field E, since it is suitable to take the former as
variable and the latter as conjugate quantity, if charge density
conservation is taken into account as a hydrodynamic equa-
tion. This gives the susceptibilities a slightly different meaning,
which is indicated by the tilde. The first term is minimized for
n parallel or perpendicular to the field (for ε̃a ≷ 0), while the
second term forces one of the tetrahedratic unit vectors to be
parallel or antiparallel to D depending on ζ̃E ≷ 0. However,
in the D2d phase these two cases are incompatible, since the
director always makes an angle of ΘT /2 or π − ΘT /2 (e.g.
cos(ΘT /2) = ±1/

√
3) with any of the tetrahedratic vectors,

disproving the possibility for zero or 90 degrees. At small fields
the first term is dominant and the director orientation is the
usual nematic one, while the tetrahedratic orientation is com-
pletely frustrated. Above a threshold fieldDc it is energetically
favorable to tilt the director away from the dielectrically opti-
mal orientation and at the same time tilt one of the tetrahedratic
vectors by the same angle towards the field (or its negative). For
positive dielectric coupling, ε̃a > 0, this tilt angle θE depends
on the external field D = |D| through

6 cos θE = β±(β2+12)1/2 with β = ±
√

3

4

ε̃a

ζ̃ET0D
(30)

where T0 > 0 (< 0) refers to parallel (antiparallel) tetrahe-
dratic field orientation. Upper and lower signs in eq. (30) refer
to the possibility to call the dielectric orientation angle between
the director and the field, either zero or π, respectively. Such a
degeneracy does not exist with respect to the tetrahedratic vec-
tors, where ‘parallel’ and ‘antiparallel’ are well defined. The
threshold field is given by

Dc =

√
3

8

ε̃a

ζ̃ET0
or βc = ±2 (31)

and basically depends on the ratio of the dielectric anisotropy
and the tetrahedratic cubic ‘electricity’.

The tilt angle θE is zero at the threshold meaning there
is no jump. For very large fields or if ε̃a → 0 the tilt angle
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approaches asymptotically the value ΘT /2, where the tetra-
hedratic orientation is perfect. If ε̃a ≡ 0 any infinitesimally
small external field reorients the whole structure in the tetra-
hedratic way (θE = θT /2) without any threshold. Here we as-
sume ε̃a to be positive and the nematic dielectric anisotropy to
be the dominant effect such that the system is below the thresh-
old for reasonable applied fields. In that case the symmetry of
the D2d phase is preserved and the hydrodynamic description
given above (and below) is valid when the z-axis is taken as the
external field direction. In this case rotations of the structure
about the electric field direction cost energy

εE =
1

2

(
ε̃a +

32

9
ζ̃ET0D

)
D2(δn)2

with an effective, field dependent susceptibility (in the big
parentheses). The mixed electric and magnetic field terms, the
last ones of Eq.(29), do not have any additional orienting effect.

If ζ̃E is large enough to reach the threshold field experi-
mentally, there is a unique way of identifying the D2d phase:
Below the threshold, the director is oriented parallel to D. In-
creasing the field beyond the threshold, the director turns away
to a direction oblique to the field - something that cannot hap-
pen in a conventional uniaxial nematic phase. The presence
of a helix further complicates the behavior. Any homogeneous
external field is incompatible with the combined helical struc-
ture of director and tetrahedral vectors and tends to distort that
structure. Therefore the quadratic and cubic electric field ener-
gies compete.

3.5 Influence of the third broken symmetry variable

As discussed above the third variable associated with broken
rotational symmetry is a rotation around n. This is not a hydro-
dynamic variable for usual uniaxial nematics, but is present in
biaxial nematics, where a second directorm can rotate orthog-
onally to n. In the D2d phase the structure Tijk rotates about
n, which is described by δΩ ≡ niδΓi = 1

4αniεipqTpjkδTqjk.
By construction δΩ is even under parity and time reversal and
odd in n, but is not a true scalar (concerning its behavior under
rotations - see below). It obeys the dynamic equation

∂

∂t
Ω + Y Ω = 0 (32)

where the quasicurrent is split into a reversible and irreversible
part Y Ω = Y ΩR + Y ΩD. The former contains the transport
derivative and the coupling to rotational flow in the perpendic-
ular plane

Y ΩR = vi∇iΩ − niωi . (33)

The latter term shows that δΩ is not constant under rota-
tions (as a true scalar is), but behaves like the component
δm · (n×m) in biaxial nematics. There is no coupling to de-
formational flow and therefore, no flow alignment in the plane
perpendicular to n. Of the counter terms in the stress tensor,
necessary to guarantee zero entropy production, one (the trans-
port term) is hidden in the isotropic pressure term and the other

is removed by the requirement that the energy is a scalar quan-
tity (cf. the procedure described in sect. 2 of [57]) with the re-
sult that the stress tensor does not contain a contribution from
δΩ.

Dissipation is described by the appropriate entropy produc-
tion

RΩ =
1

2γ2
Z2 (34)

which leads to Y ΩD = (1/γ2)Z. Compared to usual uniaxial
nematics and to the tetrahedratic phase, γ2 constitutes a second
rotational viscosity generally different from the first one γ1 due
to the anisotropy of the different rotations. The thermodynamic
conjugate Z = δεΩ/δΩ follows from the free energy

εΩ = (K5ninj +K6δ
tr
ij )(∇iΩ)(∇jΩ)

+K7δ
tr
ikεlij(∇lΩ)(∇jnk) (35)

which contains two Frank-like rotational elastic coefficients
with respect to δΩ and one for the coupling to ni. Together
with the 4 coefficients of Eq.(14) there are in total 7 rotational
elastic moduli in accordance with the known number of such
moduli for tetragonal biaxial nematics. For fourth order ma-
terial tensors the lack of inversion symmetry in D2d does not
influence the number of coefficients.

There are no further cross-coupling terms to other vari-
ables. Since this degree of freedom is not optically visible in
a polarizing microscope and the only coupling to other degrees
of freedom is provided by K7, it is not easy to detect it. The
K7 coupling links inhomogeneous Ω rotations ∇zΩ with di-
rector twist ∇xny − ∇ynx. Assuming that the tetrahedratic
structure is clamped at solid surfaces with n homeotropic, a
circular Couette cell with a fixed plate at z = 0 and a rotating
one at z = z0 will create a finite ∇zΩ. By the K7 coupling,
which enters the director dynamics via hi = δε/δni, twist of
the director is induced in the x-y-plane.

Phase winding, δΩ, of D2d is expected in non-equilibrium
situations such as directional solidification in cholesterics
[65, 66] which have an intrinsic length scale as D2d has in
Eq.(21). In D2d we have the analogue of the Lehmann ef-
fect in cholesteric liquid crystals. Indeed, in B7 many exam-
ples of phase winding have been observed, for example, during
non-equilibrium spiral formation with a doubling of the spiral
pitch [21]. Splay-bend in D2d can have many wavelengths not
necessarily harmonically related [18] so could be less coherent
and more in the orientational glass limit [66].

3.6 Relative Rotations

We think relative rotations are important because they can lead
to new tetrahedratic liquid crystal phases. In the D2d phase the
orientation of the director relative to the tetrahedratic structure
is fixed. This is similar to the smectic A phase, where the layer
normal and the director are locked to be parallel. Under certain
conditions, like the vicinity to the nematic phase transition [67]
or strong external shear [68], this coupling can weaken allow-
ing the two preferred directions to differ from each other for
some time before they relax back. Another example of relative
rotations arises for mixtures of a rod-like and a disk-like uniax-
ial nematic phase [69]. Such relative rotations play a prominent
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role in nematic elastomers [70, 71], where they are responsible
for elastic anomalies [72]. In the D2d phase relative rotations
between n and Tijk are possible, if the relative orienting en-
ergy is weak enough. For rigid combined rotations of the two
structures, there is δΓ⊥ = n×δn. Thus we can define relative
rotations

Ji = δ⊥ikδΓk − (n× δn)i (36)

as non-hydrodynamic variables. This definition of relative ro-
tations is suitable for a linear theory, while a method for a non-
linear generalization is given in [73]. These relative rotations
are even under spatial inversion, even under the replacement of
n by −n, and are invariant under rigid rotations.

The free energy of relative rotations

εJ =
1

2
D1J

2+γEijkJk∇iDj+γ
n
ijkJk∇inj+γΩikJk∇iΩ (37)

contains the stiffness coefficient D1, which has to be taken
as infinite for the rigidly locked case, as well as cross-
couplings to gradients of the electric field, the director, and
the third rotation. The tensor γEijk has the same symmetry as
Jk and reads γE(εikpnpnj + εjkpnpni), while γnijk and γΩik
are odd under inversion and odd in powers of n and given by
γn1δ

⊥
klεipqnpTqjl+γn2npεpklTijl and γΩnpTpik, respectively.

The dynamics is given by the balance equation

∂

∂t
Ji + Y Ji = 0 (38)

where the quasi-current is split into a reversible and irreversible
part Y Ji = Y J Ri + Y J Di . The former contains the transport
derivative and the coupling to deformational flow

Y J Ri = vk∇kJi + λJijkAjk (39)

where λJijk = λJ(εikpnpnj + εijpnpnk) contains one ”flow
alignment” parameter. There is no coupling to rotational flow,
since δΓi transforms as ωi under rigid rotations (cf. sec.2.2),
identical to what (n× δn)i does. Lacking the coupling to rota-
tional flow, shear flow does not lead to an alignment of Ji.

The dissipative dynamics can be derived from the appropri-
ate part of the dissipation function, Y J Di = (∂/∂Li)R

J where

RJ =
1

2
ζ⊥δ⊥ijLiLj + ζnijLihj + ζEijkLi∇jEk (40)

with ζnij = ζnnkεijk and ζEijk = ζE(εikpnpnj + εijpnpnk),
where Li = (∂/∂Ji)εJ is the thermodynamic conjugate of
the relative rotations. The transport parameter ζ⊥ governs
the relaxation of relative rotations with the relaxation time
1/(ζ⊥D1). There is a dissipative coupling between relative ro-
tations and ‘combined’ rotations, Jx/ny and Jy/nx, due to the
ζn term.

4 Nonlinear Hydrodynamics and
Macroscopic Dynamics of a D2d phase

Complex fluids and soft matter are known to frequently show
nonlinear behavior. This is manifest e.g. in the large number of

instabilities possible in such materials. To generalize the linear
description of the preceding section into the nonlinear domain,
several different aspects have to be taken into account.

First, all the material parameters, the static susceptibilities
as well as the dynamic transport parameters, can depend on
the state variables pertinent to the system. These are density
(or pressure), entropy density (or temperature), and concentra-
tion, but also the nematic and tetrahedratic order parameters.
The latter are tensors and their tensorial implications to the ma-
terial properties have already been made explicit in the linear
description (cf. e.g. the viscosity tensor Eq.(28)), while the var-
ious coefficients (e.g. viscosities) can still depend on the scalar
order parameters, S and T . A dependence on the velocity (or
rather the kinetic energy density) is forbidden by Galilean in-
variance, while a dependence on the vorticity (squared), ω2, is
possible. In addition one must guarantee the correct behavior
under rigid rotations for such terms.

A second line of generalization into the nonlinear domain
comes from the continuation of the phenomenological expan-
sions to higher orders. In statics this amounts to setting up a
free energy expression that goes beyond a harmonic expansion
in the conjugate quantities. Well-known examples are rubber
elasticity, where the linear elastic Hooke law is generalized,
or the second harmonic generation in certain materials, where
energy contributions cubic in the electric field are important,
or the thermal anomaly of water, where the linear thermal ex-
pansion coefficient vanishes (at a certain temperature and pres-
sure) and a second order one comes into play. For nematics and
similar systems such effects are less important and we will not
write down such nonlinearities here. The dissipative dynam-
ics is obtained by expansion of the entropy production (or dis-
sipation function) in terms of the thermodynamic forces. The
linear order (linear irreversible thermodynamics) is well estab-
lished and founded on microscopic grounds (linear response
theory) and the appropriate material parameters are related to
statistical properties of the system (close to equilibrium). A
phenomenological generalization of that expansion to higher
orders is prone to be ill-defined, unphysical and basically un-
necessary as effects very far from equilibrium (like turbulence)
are still captured by hydrodynamic descriptions based on lin-
ear irreversible thermodynamics. Thus, we consider in the irre-
versible dynamics of the D2d phase only nonlinearities arising
from statics.

The third class of nonlinearities is related to the reversible
dynamics of the system and has its roots in general symme-
try, geometry, and thermodynamic laws. Due to their funda-
mental nature these nonlinearities do not come with a possibly
small phenomenological prefactor, in contrast to those nonlin-
earities described above. Examples are the transport derivatives
dictated by Galilean invariance and the corrotational deriva-
tives due the transformation behavior of vectors under rigid
rotations, as is well-known from reversible nematodynamics,
ṅi+vk∇kni+(ω×n)i = 0. Being reversible, these terms have
to be compensated in order not to lead to entropy production.
This is achieved by the hydrostatic pressure contribution to the
stress tensor, σij = δijp, since the thermodynamic pressure is a
nonlinear quantity by definition p = −ε+σT+µρ+v ·g (here
σ is the entropy density, µ the chemical potential, ρ the density,
and g the momentum density). For systems where gradients
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are important as in nematics, a nonlinear gradient term (Erick-
sen stress) arises in the stress tensor σij = φkj∇ink (φij is
the conjugate to∇jni). Apart from those features known from
usual nematics, here we concentrate on the additional compli-
cations in a D2d phase due to the non-commutativity of finite
3-dimensional rotations, Eq.(3), and the condition that the ne-
matic and tetrahedratic structure have to rotate rigidly together.
The latter point is relevant in a nonlinear description, where
the material tensors have to be taken with the actual orienta-
tions of Tijk and ni, rather than at their equilibrium ones. To
avoid clumsy compatibility conditions, it is conceptually and
technically easier to treat rotations of the tetrahedratic and ne-
matic structures as independent ones and link them by a free en-
ergy term, whose coefficient can be taken as infinite at the end
regaining the rigid coupling limit of a true D2d phase. Writ-
ing down the Gibbs relation (suppressing additional degrees of
freedom)

dε = vidgi + h′idni +φijd∇jni + hΓ ′i dΓi +ψijd∇jΓi (41)

one realizes the other complication in the nonlinear descrip-
tion of the D2d phase, since d∇jΓi 6= ∇jdΓi. To over-
come this problem one can replace hΓ ′i dΓi + ψijd∇jΓi by
the appropriate expressions for the full tetrahedratic tensor
MijkdTijk + Lijkld∇lTijk, since Tijk is an ordinary tensor
and behaves rotationally like a vector in all of its indices. At
the end one projects back to the relevant rotations δΓi using
Eq.(2).

By this procedure we get for the reversible dynamics

Γ̇i + vj∇jΓi −
1

2
ωi

+
1

2α
εipqεmjlTpjkTqlkωm + Y R,pi = 0 (42)

ṅi+ vk∇kni + (ω × n)i +XR,p
i = 0 (43)

ġi+ vk∇kgi +∇ip+∇j [σEij + σR,pij ] = 0 (44)

with

∇ip = σ∇iT + ρ∇iµ+ gj∇ivj − hj∇inj − hΓj ∇iΓj
− 2ψkjεkpq(∇iΓp)(∇jΓq) (45)

where hΓj = hΓ ′j −∇jψij and hi = h′i −∇jφij .
For the generalized Ericksen stress we find (properly sym-

metrized)

2σEij = φkj∇ink + φki∇jnk +∇k(φkjni − φkinj)

+ ψkj∇iΓk + ψki∇jΓk −
3

2
εijk∇lψkl (46)

Angular momentum is conserved as the stress tensor is either
manifestly symmetric, or is the divergence of an antisymmetric
tensor [61].

The remaining phenomenological parts of the reversible
dynamics involve deformational flow and are the origin of flow
alignment and backflow

Y R,pi = λΓijkAjk (47)

XR,p
i = λijkAjk (48)

σR,pij = −λkjihk − λΓkji(hΓk + 2εlkqψlp∇pΓq) (49)

with

λijk = λ(δtrijnk + δtriknj) (50)

λΓijk = λΓnp(εikpnj + εijpnk) . (51)

Due to the non-commutativity there is a genuinely nonlinear
contribution in Eq.(49).

The free energy that couples the (transverse) rotations of
the tetrahedratic structure with director rotations is

εJ =
1

2
D1(δΓ⊥ − n× δn)2 (52)

For D1 → ∞ the rigid coupling of the D2d phase is re-
gained, while for finite D1 relative rotations are allowed.

5 Conclusions and Experimentally Relevant
Results

We have analyzed the macroscopic behavior of a nematic phase
with local D2d symmetry. This phase, we have called D2d, is
a tetrahedratic nematic which breaks parity and therefore rep-
resents a type of nematic not considered before. It is described
as a combination of a tetrahedratic Td phase with a uniaxial ne-
matic, where the nematic director is along one of the improper
4 axes. Such a tetrahedratic nematic phase could be a good
description for nematics formed by banana-shaped molecules.
D2d has three rotational hydrodynamic degrees of freedom giv-
ing rise to three Goldstone modes. Two of these modes associ-
ated with spontaneously broken rotational symmetries are con-
nected to variations of the usual nematic director while the third
describes rotations of the tetrahedral structure about the direc-
tor. As a result, the former two can be optically observed. The
linear gradient term in the generalized Frank elastic free en-
ergy, possible due to the inversion-breaking tetrahedral struc-
ture, gives rise to ambidextrous chirality. However, with a he-
lical structure two of those modes acquire a gap and only rota-
tions about the helical axis remain truly hydrodynamic. If only
the nematic director is detectable (e.g. under crossed polariz-
ers in the microscope) the helically structured D2d phase could
look similar to a cholesteric phase.

In contrast to usual uniaxial and biaxial nematic phases
with only quadrupolar order, velocity gradients (extensional
flows) reversibly generate in D2d concentration-, heat- and
electric currents and, vice versa, electric fields, temperature and
concentration gradients give rise to stresses.

There are also additional static and dissipative effects not
known from usual nematics. These include irreversible cou-
pling terms between director rotations on the one hand and
electric fields and temperature and concentration gradients on
the other. In addition, there are static contributions coupling di-
rector deformations to density, concentration and temperature
variations unknown in quadrupolar nematics.

The behavior in a static electric field gives rise to additional
possibilities to distinguish a tetrahedratic nematic from more
usual nematic phases. First, it allows second harmonic genera-
tion as it breaks parity. Second, there is a rather unusual reori-
entation behavior. Below a threshold field, the director is ori-
ented parallel to the field (for positive dielectric anisotropy).
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Above this threshold value the director turns away continu-
ously from its original orientation to a direction oblique to the
field, a phenomenon unknown to uniaxial nematics with posi-
tive dielectric anisotropy.

Of course, a D2d phase is not the only possibility for tetra-
hedral nematic phases [8]. If the nematic director is along one
of the 3-fold tetrahedral axes, a polar biaxial nematic phase of
C3V symmetry arise. Its properties are very close to that of a
uniaxial polar nematic, since the transverse structure of C3V is
hardly detectable in optical measurements. The linear gradient
term in the generalized Frank elastic free energy reduces in this
phase to a linear splay term, already well-known from uniaxial
polar nematics.

Another possibility would be to add to the tetrahedral struc-
ture a biaxial nematic (of tetragonal symmetry) leading to a
phase of D2 symmetry. It has three equivalent, orthogonal 2-
fold rotation axes and no mirror planes left. Thus, it is chi-
ral, i.e., a pseudoscalar quantity exists, whose sign governs the
helical sense and which is due to the internal structure. How-
ever, for this pseudoscalar both signs are possible depending on
whether the tetrahedral structure or its inverted one is present.
Thus, ambidextrous chirality is obtained in the same way as it
is found in the CB2 smectic banana phase [26, 27].

Finally, a S4 symmetric phase is obtained, where one im-
proper 4̄ axis is the sole symmetry element, if one adds to a
D2d phase an appropriate additional rank-3 order parameter.
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