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Hydrodynamics of nematic ferrofluids
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Abstract. We derive hydrodynamic equations for nematic ferrofluids (ferronematics) in the limit that the
magnetic degree of freedom has relaxed to its equilibrium value. We concentrate on novel dynamic effects
linear in the magnetic field. We show that flow alignment, heat conduction, diffusion, thermodiffusion,
viscosity and director reorientation are all modified by the presence of an external field. In particular,
the new effects describe reversible (irreversible) couplings, where the conventional effects are irreversible
(reversible). We discuss, how these effects can be measured. In principle, this description is applicable to
conventional nematics, too, although huge magnetic fields are expected to be necessary for detecting the
new effects in this case.

PACS. 61.30.-v Liquid crystals – 75.50.Mm Magnetic liquids – 05.70.Ln Nonequilibrium irreversible
thermodynamics

1 Introduction

The synthesis of nematic liquid crystals with single-
domain ferro- or ferrimagnetic grains, usually denoted as
ferronematics, is of great interest for potential applica-
tions but also under the scope of fundamental research.
With the pioneering work of Brochard and de Gennes [1]
the idea came up to intensify the ponderomotive response
of a liquid crystal by doping it with a small amount of
ferromagnetic particles. Owing to a strong orientational
coupling between the magnetic grains and the surround-
ing nematogen matrix, the susceptibility of the director
dynamics was expected to be appreciably enhanced. In-
deed, the magnetic field strength necessary to affect the
director was predicted to decrease by several orders of
magnitude giving control over the orientational state of
the liquid crystal by magnetic fields as weak as 100 Oe.

During recent years considerable efforts were under-
taken in the preparation of various dispersions of ferro-
magnetic particles in liquid crystals. Starting with the
first report in 1970 of mixing magnetic grains with the ne-
matic phase of MBBA [2], there was a number of reports
on the production of mixtures of rod-like and disk-like ne-
matics with magnetic grains [2–5]. In ref. [6] collective
magnetic and orientational effects, but no spontaneous
magnetization were described for a suspension of γ−Fe2O3

particles in the nematic phase of MBBA. In many systems
investigated there were problems with chemical stability.
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Recently, however, the preparation of stable ferronematic
systems has attracted increasing attention [7–15].

In their original work Brochard and de Gennes started
from the so-called ”rigid anchoring” approximation, im-
plying that the directions of the director n and the local
magnetization M are perfectly co-aligned. However, with
the synthesis of thermotropic ferronematics [6] it became
evident that the rigid-anchoring approximation might not
be generally applicable. Within the framework of a micro-
scopic model of rod-like ferromagnetic grains Burilov and
Raikher [16] reconsidered the surface interaction between
the liquid crystalline nematogens and derived an expres-
sion for the free energy of a ferronematic. Thereby the ori-
entations of n and M were treated as separate degrees of
freedom. As in Ref. [1] the strength of the magnetization
was assumed to be in saturation, even without external
fields. However, the existence of a remanence in ferrone-
matics, being characteristic for a ferromagnetic ordering
(spontaneous equilibrium-magnetization in the absence of
any external magnetic field) seems to be experimentally
unproven yet. Rather the existing substances all seem to
be superparamagnetic like ordinary ferrofluids.

In a recent analysis [17] this question has been ad-
dressed within the scope of a Landau theory derived from
the underlying symmetries of the problem. Based on
a Landau-deGennes expansion of the free energy an ex-
pression for the free energy was constructed, which en-
tails nematic as well as magnetic contributions. Depend-
ing on the signs and magnitude of the magnetic-nematic
cross-couplings there is the possibility to have either a di-
rect transition from the isotropic unmagnetized fluid to
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a ferromagnetic-nematic phase (spontaneous magnetiza-
tion) or a two-step transition via a superparamagnetic-
nematic state. Interestingly, a phase with spontaneous
magnetization but without nematic ordering is not possi-
ble within the scope of this model.

Strictly speaking, owing to the admixture of magnetic
particles to a nematic both, the nematic and the magnetic
degree of freedom have to be taken into account. However,
we will restrict ourselves here to situations where the mag-
netization has relaxed to its equilibrium value parallel to
the applied magnetic field. It is then a function of all state
variables (and the external field), but has no independent
dynamics, i.e. magnetic relaxation effects are disregarded
here. This is a good approximation for times slower than
typical magnetic relaxation times (10−6s). Since the ne-
matic director dynamics is much slower, it is appropriate
to keep explicitly the latter (this has nothing to do with
the ”rigid anchoring” approximation mentioned above,
since n can have any orientation relative to M). This
description is, thus, in principle also valid for ordinary ne-
matics, where no magnetic degree of freedom is present.
However, the new effects described here probably require
huge magnetic fields to be observable in ordinary nemat-
ics, while in ferronematics their detection should be much
easier. In ordinary nematics the diamagnetic interaction
energy adding up to the director’s molecular field is usu-
ally considered to be the only relevant magnetic contribu-
tion. However, in ferronematics other effects disregarded
so far mostly (except in [18]) might become significant. In
the following we will concentrate on those effects, which
are linear in the magnetic field strength H. As this quan-
tity is of negative parity under time reversal such effects
can arise in the dynamics only and a variety of new On-
sager couplings will appear. These new couplings change
the character of the contributions in the field free case
from reactive to dissipative or vice versa. The implica-
tions of these new couplings will be illustrated by means
of a series of different examples.

2 Nematodynamics without magnetic field

Nematic liquid crystals are characterized by an extended
set of hydrodynamic variables that comprise those of a
simple liquid (density ρ, momentum density ρv related to
the velocity v, and entropy density σ, or equivalently free
energy density f) and in addition the director n, the sym-
metry variable denoting orientational changes (n2 = 1) of
the preferred direction and, in the case of mixtures, the
concentration c. In our case the latter is the concentra-
tion of the ferromagnetic particles. The hydrodynamic

equations are [19–21](
∂

∂t
+ vi∇i

)
ρ + ρ div v = 0 (1)

ρ

(
∂

∂t
+ vj∇j

)
vi + ∇jσij = 0 (2)(

∂

∂t
+ vj∇j

)
ni + Yi = 0 (3)

ρ

(
∂

∂t
+ vj∇j

)
c + div jc = 0 (4)(

∂

∂t
+ vi∇i

)
σ + σdiv v + div jσ =

R

T
(5)

Generally the densities of the currents for heat jσ, con-
centration jc, and momentum, the stress tensor σij and
the quasi-current Yi are the sum of two parts, a reversible
and an irreversible one, where the former (latter) has the
same (opposite) time reversal symmetry as the rest of the
equation and leads to zero (positive) entropy production,
i.e. it is reactive (dissipative). Within irreversible ther-
modynamics the dissipative parts can be derived from the
dissipation function R (the source term in (5)) as a po-
tential, while the reversible ones do not follow from any
potential [22]. The currents read

σij = pδij + Φlj∇inl − 1
2
λkjihk − νijkl∇lvk (6)

Yi = −1
2
λijk∇jvk +

1
γ1

δ⊥
ijhj (7)

jσ
i = −κij∇jT − DT

ij∇jµc (8)

jc
i = −Dij∇jµc − DT

ij∇jT (9)

with the transverse Kronecker symbol δ⊥
ij ≡ δij −

ninj . The conjugate quantities temperature T =
T (ρ, σ, c), pressure p = p (ρ, σ, c), relative chemical po-
tential µc (ρ, σ, c), and the ’molecular fields’ hi (ρ, σ, c) and
Φij (ρ, σ, c) follow from the free energy density f (see Ap-
pendix (A.1)). This part of the equations, which con-
stitutes the statics of the system, is derived completely
independently from the dynamics, eqs.(6-9).

The heat conduction tensor κij , the diffusion tensor
Dij as well as thermodiffusion tensor DT

ij (related to the
Soret/Dufour effects) are symmetric and have the follow-
ing form containing together six coefficients (thermal con-
ductivity, diffusivity and Soret/Dufour),

κij = κ⊥δ⊥
ij + κ‖ ninj (10)

The tensor λijk, describing flow alignment in (7) and back
flow in (6) contains one phenomenological parameter

λijk = (λ − 1)δ⊥
ijnk + (λ + 1)δ⊥

iknj (11)

which is reversible, since hi, Yi and σij all do not change
sign under time reversal.
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The fourth rank viscosity tensor contains five viscosi-
ties

νijkl = ν2(δjlδik + δilδjk)
+2(ν1 + ν2 − 2ν3)ninjnknl

+(ν3 − ν2)(njnlδik + njnkδil + ninkδjl + ninlδjk)
+(ν4 − ν2)δijδkl

+(ν5 − ν4 + ν2)(δijnknl + δklninj) (12)

3 Dynamics in a magnetic field

3.1 Linear vs. quadratic field effects

Let’s consider nematics in a magnetic field. An exter-
nal field breaks the rotational symmetry externally and
ni relaxes according to the diamagnetic anisotropy to its
equilibrium orientation, which is either parallel or perpen-
dicular to the external field. The appropriate molecular
field hi reads

h
(M)
i = −χaHi(n · H) (13)

Usually this is the only effect of an external magnetic field
that is taken into account when dealing with ordinary ne-
matic liquid crystals. All other effects (a few of them
are discussed in [18]) are assumed to be small and are
neglected. In ferronematics the response to an external
magnetic field is rather enhanced and such hitherto disre-
garded effects can become important. There is the (rather
trivial) effect that all material coefficients (transport pa-
rameters and susceptibilities) can depend on H2. In addi-
tion, if n is perpendicular to H in equilibrium, the system
is biaxial and the uniaxial tensors in eqs. (10, 11, 12) are
of the well-known biaxial form. Furthermore, there are
the magnetic forces, which are described by the Maxwell
stress σ

(M)
ij = −µeq(H)HiHj with the equilibrium mag-

netic susceptibility µeq(H) [23] and by a redefinition of
the pressure p → p − (1/2)H2. However, all these effects
(including (13)) are quadratic in the external field strength
and represent additions to effects already present. In the
following we will discuss additional effects that are linear
in the field and represent new effects thus bearing a good
chance of being observable in ferronematics.

Since a magnetic field changes sign under time rever-
sal, linear effects are possible in the dynamics only, since in
the statics all relations are time-reversal symmetric, that
is invariant under time reversal. In the dynamics the cur-
rents come in two classes, either reversible or irreversible,
meaning time-reversal symmetric and antisymmetric, re-
spectively. The introduction of a linear field then toggles
between these two possibilities.

3.2 Flow alignment

As a first example we will consider flow alignment in the
presence of a magnetic field. The flow alignment tensor

(11) can have additions linear in the field

λD
ijk(H)=λD

1

(
δ⊥
iqεpjqHpnk + δ⊥

iqεpkqHpnj

)
+λD

2

(
δ⊥
ikHpεpjqnq + δ⊥

ijHpεpkqnq

)
+λD

3 (Hjεipknp + Hkεipjnp)

+λD
4 (Hqnqnjεipknp + Hqnqnkεipjnp)

+λD
5 Hpεpiqnqnjnk + λD

6 Hpεpiqnqδ
⊥
jk (14)

Note that these contributions are all dissipative while (11)
represents only reversible ones. Adding up in eq.(7) both
contributions into λ

(Y )
ijk ≡ λijk + λD

ijk(H) then the cross

coupling term in (6) reads λ
(σ)
kji ≡ λkji+λD

kji(−H) = λkji−
λD

kji(H) due to Onsager’s relation1 guaranteeing a positive
(zero) entropy production due to the field-dependent (-
independent) parts.

In the stationary case all currents and quasi currents
are zero (disregarding the thermal degree of freedom here)

∇iσij = 0, and Yi = 0. (15)

The first condition is identically satisfied for constant
shear flow and constant field. The second one

−1
2
λ

(Y )
ijk ∇jvk +

1
γ1

δ⊥
ikh

(M)
k = 0 (16)

reads explicitly

nk(λ − 1)∇ivk + nj∇jvi(λ + 1) − 2λninjnk∇jvk (17)

+λD
ijk(H)∇jvk + χ′

aHinjHj − χ′
aninkHknjHj = 0,

where χ′
a = 2χa/γ1.

We will solve eq.(17) for a particular case, where the
new linear field terms (14) become manifest: The external
field lies in the shear plane

nx = sin θ

ny = cos θ sinϕ

nz = cos θ cos ϕ

Hy = H sin ψ

Hz = H cos ψ (18)

with the shear flow ∇zvy = S and with ψ the angle of the
magnetic field with the shear gradient.

Without the new terms it is known that the director
also lies in the shear plane (i.e. θ = 0) making an angle ϕ
with the direction of the shear gradient, where ϕ is given
by

2S (λ cos 2ϕ + 1) = χ′
aH2 sin (2 (ϕ − ψ)) (19)

1 With the currents Cα ≡ {Yi , σjk} the forces are Fβ ≡
{hi , −∇jvk}, since the entropy production R ∼ −hiYi −
vk∇jσkj ∼ −hiYi + σkj∇jvk. Then, Onsager’s relation
Dαβ(H) = εαεβDβα(−H), with Cα = DαβFβ , leads to the
symmetries stated above for the λ-tensor, since εαεβ = −1
for cross terms connecting variables of different time reversal
symmetry.
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The new terms (except λD
2 ) force the director out of the

shear plane. Taking first λD
1 as a representative for the

other terms (in order to simplify the formulas) we get the
unchanged condition (19) for the in-plane orientation ϕ
of the director. There is, however, now an out-of-plane
component of the director given by the non-zero angle θ

tan θ =
−λD

1 SH sin ϕ cos(ϕ + ψ)
(λ + 1)S cos ϕ + χ′

aH2 sin ψ cos(ψ − ϕ)
(20)

This kinetic expulsion out of the shear plane due to the
combined action of shear flow and (in-plane) field occurs,
even if the (static) diamagnetic anisotropy would favor a
director parallel to the field (χa > 0), i.e. to be in-plane.
Other contributions in (14) will change also the simple
expression (19) for the in-plane components of n. E.g.
the two last contributions in (14) lead to an out-of-plane
orientational angle

tan θ =
β sin2 ϕ

2(λ sin ϕ + α cos ϕ)
(21)

with 2α = χ′
aH2/S and β = (λD

5 − λD
6 )H. Here the in-

plane-angle ϕ is not given by (19) but follows from

β2 sin3 ϕ

4(λ sin ϕ + α cos ϕ)2
=

1 + λ cos 2ϕ − α sin 2ϕ

(λ − 1) sin ϕ + 2α cosϕ
(22)

In (21) and (22) we have simplified the formulas by as-
suming ψ = 0, i.e. the magnetic field parallel to the shear
gradient. For λD

3 and λD
4 the appropriate formulas are

even more bulky and will not be shown here.

3.3 Heat conduction, diffusion and thermodiffusion

As a second example we consider the heat conduction ten-
sor κij . There are additions linear in the field of the form

κR
ij(H) = κR

1 εijkHk + κR
2 εijknknpHp

+κR
3 (εipqHpnqnj − εjpqHpnqni) (23)

These terms are reversible due to their time reversal be-
havior, while those of (10) are irreversible. The former
are antisymmetric κR

ij(H) = κR
ji(−H) = −κR

ji(H) accord-
ing to the Onsager’s relation thus leading to zero entropy
production.

The field-free heat conduction tensor (10) leads to a
heat current jσ = (κ‖ − κ⊥)n (n·∇T ) + κ⊥∇T that lies
in the plane of the director and the temperature gradient.
The field-dependent terms lead to (reversible) contribu-
tions to the heat current that can be perpendicular to
both, temperature gradient and field, or to temperature
gradient and director, or to field and director. For exam-
ple, if the field H is along the x- and temperature gradient
G along the y-direction, there is a reversible component
of the heat current

jσ
z =

{
(κR

1 + κR
2 )HG

(κR
1 − κR

3 )HG
for n ‖

{
H

∇T
(24)

that is orthogonal to the n/∇T plane and perpendicu-
lar to the field. This effect is quite analogous to the Hall
effect related to electric currents. There, similarly the di-
agonal elements (the analogues to (10)) are dissipative,
while the antisymmetric parts (the analogues to (23)) are
non-dissipative [24]. Instead of a voltage transverse to the
dissipative electric current, eq.(24) leads to a temperature
difference transverse to the dissipative heat current. This
effect (especially the part related to κR

1 ) is in principle
present in any fluid (and called Righi-Leduc effect [18])
and not restricted to ferronematics, but in the latter sys-
tem chances are much better that it is observable.

Quite analogously to (23) one can introduce 3 new re-
versible diffusivities DR

1,2,3 and the discussion between (23)
and (24) can be taken over replacing (jσ, T ) by (jc, µc).
Rather similar is also the case of thermal diffusion. There
are three reversible thermal diffusivities DT,R

1,2,3 of the form
(23). Since they are antisymmetric w.r.t. interchange of
indices, and linear in the field, they automatically ful-
fill Onsager’s relation DT,R

ij (H) = DT,R
ji (−H). Under an

external magnetic field (of strength H) orthogonal to a
temperature gradient (of magnitude G) these new contri-
butions give rise to a concentration current (orthogonal to
both) given by the r.h.s. of (24), if the κR’s are replaced
by DT,R’s. Thus, Hall-like temperature and concentra-
tion gradients are generated, which are transverse to the
dissipative heat and concentration currents, respectively.

3.4 Viscosity

As the third example we consider field dependent gener-
alizations of the viscosity tensor

νR
ijkl(H) = νR

1 [εimpnjnknl + εjmpninknl − εkmpnjninl

−εlmpnjnkni]npHm

+ νR
2 [εjmpnlδik − εlmpnjδik + εjmpnkδil

−εkmpnjδil + εimpnkδjl − εkmpniδjl

+εimpnlδjk − εlmpniδjk]npHm

+ νR
3 [εkmpnlδij + εlmpnkδij

−εimpnjδkl − εjmpniδkl]npHm (25)

+ νR
4 [εikpnjnl + εilpnjnk

+εjlpnink + εjkpninl]npnmHm

+ νR
5 [εikpnjnl + εilpnjnk + εjlpnink + εjkpninl]Hp

+ νR
6 [εikpδjl + εilpδjk + εjlpδik + εjkpδil]npnmHm

+ νR
7 [εikpδjl + εilpδjk + εjlpδik + εjkpδil]Hp

+ νR
8 np[εikp(Hjnl + Hlnj) + εilp(Hjnk + Hknj)

+εjlp(Hink + Hkni) + εjkp(Hinl + Hlni)]

Because of νR
ijkl(H) = νR

jikl(H) and νR
ijkl(H) = νR

ijlk(H)
the stress tensor remains symmetric and (25) does not
contain any coupling to the vorticity. All contributions
in (25) are reversible, where the antisymmetry w.r.t. ex-
change of the first pair of indices with the second one,
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νR
ijkl(H) = νR

klij(−H) = −νR
klij(H), (according to On-

sager’s relation) guarantees zero entropy production. The
major effect of these new terms is that a density wave
(sound wave) is not only connected to divv, but also to
transverse velocities (and thus to all other variables). This
will be manifest as (reversible) bulk shear stresses accom-
panying the sound wave. For example, for a density wave
with amplitude ∆ρ, frequency ω and wave vector k along
the x-direction, magnetic field H along the y-direction,
this bulk shear stress will be felt by a tracer particle as a
transverse force

fz = ν̄R ω k H
∆ρ

ρ0
(26)

with ν̄R = 2νR
2 +νR

3 −2νR
7 , ν̄R = νR

1 +2νR
2 −νR

3 −2νR
5 −2νR

7 ,
and ν̄R = −2νR

6 − 2νR
7 if n is along the z-, x- and the y-

direction, respectively.

3.5 Director reorientation

In eq.(7) the rotational viscosity γ−1
1 δ⊥

ij ≡ (γ−1)ij acquires
linear field-dependent additions

(γ−1)R
ij(H) =

1
γR
1

εijknknpHp (27)

+
1

γR
2

(εijp + εipknknj − εjpknkni)Hp

which are reversible and give zero entropy production, be-
cause they are antisymmetric in i and j according to On-
sager’s relation. Of course, they are also transverse to n
in both indices ni (γ−1)R

ij(H) = 0 = nj (γ−1)R
ij(H).

Usually, the so-called rotational viscosity γ1 is mea-
sured by the homogeneous relaxation of the director to-
wards an external magnetic field due to the magnetic
anisotropy effect (13). In this case H and n(t) lie in the
same plane all the time with relaxation rate (χa/γ1)H2

[20]. The new terms in (27) change this picture. With
(13,27) the director relaxation equation (3) takes the form

ṅi = χ′
aδ⊥

ijHj(H ·n) + χ′′
a(H×n)i(H ·n)2 (28)

where χ′
a = χa/γ1 and χ′′

a = χa(1/γR
1 +1/γR

2 ). Obviously,
n(t) does not stay in the (initial) plane given by H and
n(0), since there is a nonvanishing component (H×n) · ṅ
in (28). Thus, there are two distinct and coupled dynamic
processes involved. For small angles the solutions of (28)
can be written

ϕ = ϕ0 exp(−χ′
aH2t) cos(χ′′

aH3t)
θ = ϕ0 exp(−χ′

aH2t) sin(χ′′
aH3t) (29)

where ϕ is the angle between the field and the projection
of n(t) onto the initial plane H/n(0) and θ is the angle of
n(t) with this initial plane. The time dependence of ϕ is
not a simple exponential decay, but shows an oscillation
about it. The angle θ describes spatial oscillations of the
director during the reorientation process. With field re-
versal H → −H, also θ changes sign. Without the new
reversible terms (χ′′

a = 0) a simple relaxation for ϕ, which
is then the true angle between n and H is regained.

Appendix: Static relations

The statics of a macroscopic system is governed by its free
energy. For nematics the free energy density in harmonic
approximation reads [19–21]

f =
T

2CV
(δσ)2 +

1
2ρ2κs

(δρ)2 +
γ

2
(δc)2 +

1
ραs

(δσ)(δρ)

+ βσ(δc)(δσ) + βρ(δc)(δρ) +
1
2

Kijkl(∇jni)(∇lnk) (A.1)

where the Frank tensor

Kijkl = K1δ
⊥
ijδ

⊥
kl + K2npεpijnqεqkl + K3njnlδ

⊥
ik (A.2)

describes the energy cost for distorting the homogeneous
alignment of the director. The conventional static sus-
ceptibilities contained in (A.1) are the specific heat (at
constant density) CV , the isentropic compressibility κs,
the adiabatic volume expansion coefficient αs and the ap-
propriate susceptibilities γ, βσ and βρ related to the con-
centration instead of the total mass density.

Due to the Gibbs relation (the local manifestation of
the first and second law of thermodynamics)

df = µdρ + T dσ + µc dc + Φij d∇jni + h′
i dni (A.3)

the conjugate quantities follow from the free energy den-
sity by partial differentiation

δT ≡ ∂f

∂σ
=

T

CV
δσ +

1
ραs

δρ + βσδc (A.4)

δµ ≡ ∂f

∂ρ
=

1
ρ2κs

δρ +
1

ραs
δσ + βρδc (A.5)

δµc ≡ ∂f

∂c
= γ δc + βσδσ + βρδρ (A.6)

Φij ≡ ∂f

∂∇jni
= Kijkl∇lnk (A.7)

h′
i ≡ ∂f

∂ni
= δ⊥

iq

∂Kpjkl

2 ∂nq
(∇lnk)(∇jnp) (A.8)

The response to static director deformations is given by

hi ≡ δ

δni

∫
fdV = h′

i − ∇jΦij (A.9)

The pressure is related to the other conjugate quantities
by the Gibbs-Duhem relation [21]

δp = ρδµ + σδT − µcδc − hjδnj (A.10)

neglecting contributions quadratic in the velocity.
The effect of an external magnetic field H on the stat-

ics is rather simple. Since all static equations have to be
invariant under time reversal symmetry, and H changes
sign under this symmetry, only quadratic contributions to
the free energy are allowed in lowest order

f (M) = −1
2
χa(H · n)2 (A.11)

which is the diamagnetic anisotropy energy [20] giving rise
to the magnetic molecular field (13). Depending on the
sign of χa the static orientation of n is either parallel or
perpendicular to H.
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Conclusions and Perspectives

In this paper we have derived hydrodynamic equations
for ferronematics in the limit that the magnetic degree of
freedom has relaxed to its equilibrium value. When com-
paring the equations derived here with those of ordinary
nematic liquid crystals, we find that there is no additional
contribution to the static behaviour linear in the magnetic
field. This situation changes completely, however, when
one investigates dynamic coupling terms that are linear
in the magnetic field between the various hydrodynamic
variables.

The new dynamic effects predicted here come in four
classes. In most nematics, for temperatures far above a
smectic phase, one observes the phenomenon of flow align-
ment. A shear flow applied to a spatially homogeneous
director field leads to a stationary configuration in which
the director includes an angle with its original orientation
- the flow alignment angle. In the case of usual nematics
the director lies in the shear plane. Here we predict that
an additional magnetic field in the shear plane applied to
a ferronematic forces the director out of the shear plane
due to the dynamic effects given here, which couple the
director to the shear flow dissipatively.

Applying a temperature gradient to a nematic leads
to a heat flux that has components parallel to the applied
temperature gradient and parallel to the director. Here we
suggest that an additional magnetic field orthogonal to the
temperature gradient applied to a ferronematic leads to
an additional reversible heat current that is perpendicular
to both, the applied magnetic field and the temperature
gradient.

In most hydrodynamic systems including ordinary ne-
matics only viscous effects couple the various components
of the velocity field. For a ferronematic there are, in ad-
dition, several terms coupling the three components of
the velocity field reversibly. One of the consequences
of these new contributions could be detected experimen-
tally studying the effect of a sound wave propagating in
x−direction, say, on a tracer particle also exposed to a
magnetic field in y−direction. For this configuration we
predict the occurrence of a force on this tracer particle in
z− direction, that is perpendicular to the plane spanned
by the two applied fields.

Director reorientation is expected to change as well
when switching from an ordinary nematic to a ferrone-
matic. Here we have shown that the director reorientation
picks up reversible contributions in addition to the usual
director diffusion associated with the rotational viscosity
γ1. The new reversible contributions are predicted to lead
to a relaxation oscillation when the director is reoriented
in an external magnetic field in contrast to the simple
relaxation observed for usual nematics.
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Tomčo, J. Jadżyn, G.Czechowski, J. Magn. Magn. Mater.
196, 578 (1999).

15. C.Y. Matuo and A.M. Figueiredo Neto, Phys. Rev. E 60,
1815 (1999).

16. S. V. Burylov and Y. L. Raikher. Mol. Cryst. Liq. Cryst.
258, 107 (1995).

17. H. Pleiner, E. Jarkova, H.-W. Müller, and H.R. Brand,
Landau description of ferrofluid to ferronematic phase
transitions, Magnetohydrodynamics, in print (2001).

18. T.C. Lubensky, Mol. Cryst. Liq. Cryst. 23, 99 (1973).
19. P. C. Martin, O. Parodi and P.S. Pershan, Phys. Rev. A6,

2401 (1972).
20. P.G. de Gennes and J. Prost, The Physics of Liquid Crys-

tals (Clarendon Press, Oxford, 1993).
21. H. Pleiner and H.R. Brand, Hydrodynamics and Elec-

trohydrodynamics of Nematic Liquid Crystals, in Pattern
Formation in Liquid Crystals, eds. A. Buka and L. Kramer
(Springer, New York, 1996) p. 15ff.

22. D. Forster, Hydrodynamic Fluctuations, Broken Symme-
try and Correlation Functions, Benjamin, Reading Mass.
(1975)

23. R.E. Rosensweig, Ferrohydrodynamics (Cambridge Univer-
sity Press, New York, 1985).

24. L.D. Landau and E.M. Lifshitz, Electrodynamics of Con-
tinuous Media, (Pergamon, Oxford, 1984).


