
Eur. Phys. J. E 17, 501-506 (2005) DOI 10.1140/epje/i2004-10153-6

A phenomenological theory of the isotropic to chiral smectic-C
phase transition

Prabir K. Mukherjee1, Harald Pleiner2,a, and Helmut R. Brand3

1 Haldia Govt. College, P.O.-Debhog, Dist.-East Midnapore, Pin-721657, India;
2 Max-Planck-Institut für Polymerforschung, 55021 Mainz, Germany;
3 Theoretische Physik III, Universität Bayreuth, D-95540 Bayreuth, Germany

Received 13 August 2004 and Received in final form 16 March 2005
published online: 9 August 2005 – c© EDP Sciences / Societa Italianà di Fisica / Springer-Verlag 2005

Abstract. In this paper we discuss the direct isotropic to chiral smectic C phase transition on the basis
of a phenomenological theory. The model free energy is written in terms of the coupled order parameters
including the spontaneous polarization. We present a detailed analysis of the different phases that can occur
and analyze the question under which conditions a direct isotropic to chiral smectic-C phase transition is
possible when compared to other phase transitions. On the basis of this model the isotropic - smectic-C∗

transition is always of first order. The theoretical predictions are compared with the available experimental
results.

PACS. 64.70.Md Transitions in liquid crystals – 05.70.Fh Phase transitions: general studies – 61.30.-v
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1 Introduction and motivation

During the last two decades much progress has taken place
in the field of ferroelectric liquid crystals. The smectic
phases are organized in layers, where in the smectic C
(SmC) phase the director n is tilted by a fixed angle θ
relative to the layer normal k. The chiral smectic (SmC∗)
phase represents a spatially modulated structure [1]. The
SmC∗ phase shows in addition an intrinsic twist of the
director from layer to layer. This additional symmetry
breaking (C2h →C2) allows microscopic electric dipoles
to form a spontaneous electric polarization P, which lies
in the smectic planes.

While the research on the smectic A (SmA) to SmC∗

phase transition has attracted much attention, there is
also increasing interest in the isotropic to SmC∗ (I-SmC∗)
transition. There are relatively few experimental works [2]
- [6] on the I - SmC∗ phase transition. All these experi-
ments showed the first order character of the I - SmC∗

phase transition. (S)-4’-(6-methyloctyl)resorcylidene 4-al-
kylanilines (MORA-n) are one such family of materials
which show a direct I - SmC∗ phase transition. The en-
thalpy jump at the transition point indicates a first order
character of the I - SmC∗ phase transition. The electro-
optic measurements on the chiral derivative, denoted as
A*B by Coles et al [6] show a weak temperature depen-
dence of the spontaneous polarization in the SmC∗ phase
and a finite value of the tilt angle and the spontaneous po-
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larization at the I - SmC∗ phase transition. The presence
of a sharp peak and the small anomaly in the heat capac-
ity measurements [7] also support a first order character
of the I-SmC∗ phase transition.

There is practically no theoretical work on the I -
SmC∗ phase transition because of the complexity of the
system. The purpose of the present paper is to develop a
phenomenological Landau model to examine the nature of
and the factors governing the I - SmC∗ phase transition.
Our approach will be similar to that used already for the
investigations of the I - SmA and I - SmC phase transi-
tions, which we analyzed before [8,9]. In the latter paper
there is an algebraic error, which we correct here.

2 Model

2.1 Order parameter

The construction of the Landau free energy for the I -
SmC∗ phase transition is rather complex, since one needs
four different order parameters: the modulus of the orien-
tational order parameter, S, the smectic order parameter
characterizing the density wave, ψ, the tilt angle, θ and
the spontaneous polarization, P as well as the wave vector
q of the helix to describe the I - SmC∗ phase transition.
All these order parameters jump simultaneously at the I -
SmC∗ phase transition. First we start by describing the or-
der parameters involved in the I - SmC∗ phase transition.
The layering in the SmC∗ phase is described [10,11] by
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the order parameter ψ(r) = ψ0 exp(−iΦ), whose modulus
ψ0 is defined as the amplitude of a one dimensional den-
sity wave characterized by the phase Φ. The wave vector
∇iΦ is parallel to the director ni in the smectic A phase.
The layer spacing is given by d = 2π/q0 with a nonzero
q0 = | ∇Φ |. It should be noted that d generally is of the
order of the molecular length. Thus, the gradient expan-
sion of ψ, in particular its truncation after the first few
terms, is not of the same rigor as the gradient expansion
of the nematic order parameter (see below). Nevertheless,
we restrict ourselves to the lowest gradient terms of ψ for
practical reasons. As a consequence, the q0 dependences
obtained by this procedure have to be taken with a grain
of salt. However, since q0 does not vary very much in most
smectic phases, the q0 dependence is not the most inter-
esting one, anyhow. The tilt angle in the SmC∗ phase is
described by the uniaxial orientational order parameter

Qij =
S

2
(3ninj − δij) (1)

where ni is not parallel to ∇iΦ. We assume flat layers in
the smectic phases and take the layer normal q−1

0 ∇Φ = ez

as the z−axis. Then n is defined by

n = ex sin θ cosφ(z) + ey sin θ sinφ(z) + ez cos θ (2)

where θ is the angle between the layer normal and the
director ni. The azimuthal angle φ describing the average
position of the molecules on the cone changes with the
coordinate z as φ = qz. The wave vector of the helix, q,
is much smaller than the wave vector of the density mod-
ulation i.e. q << q0. The quantity S defines the strength
of the orientational ordering and is zero (one) for com-
plete disorder (order). Thus the tilt angle in the SmC∗

phase is determined by the orientational order parameter.
We point out that the modulus of the orientational order
parameter in the SmC∗ phase was measured experimen-
tally by Dollase and Fung [12]. In the main body of this
manuscript we neglect the small biaxiality [13] in the ori-
entational order parameter for simplicity, but discuss its
main implications in the Appendix.

The in-plane spontaneous polarization is defined as

P = P0(− sinφ(z), cosφ(z), 0) (3)

Here P0 is the magnitude of the spontaneous polarization
in the unwound ferroelectric state.

2.2 The free energy

Considering the order parameters described above we will
now construct the free energy density near the I - SmC∗

phase transition. Keeping homogeneous terms up to quar-
tic order and gradients only to lowest relevant order, the
free energy density near the I - SmC∗ phase transition can

be written as:

F = F0 +
1
2
AQijQij −

1
3
BQijQjkQki

+
1
4
C1(QijQij)2 +

1
4
C2QijQjkQklQli

+
1
2
α |ψ|2 +

1
4
β |ψ|4 +

1
2χ0

P2

+
1
2
δQijQij |ψ|2 + γQijPiPj +

1
2
L1∇iQjk∇iQjk

+
1
2
L2∇iQik∇jQjk + L3εijkQil∇kQjl

+
1
2
b1 |∇iψ|2 +

1
2
b2 |∆ψ|2 +

1
2
eQij(∇iψ)(∇jψ

∗)

+
1
2
fQilQjl(∇iψ)(∇jψ

∗) +
1
2
gijklPl∇kQij

+
1
2
hQijQkl(∇i∇jψ)(∇k∇lψ

∗) (4)

where F0 is the free energy of the isotropic phase. A =
a(T − T ∗

1 ) and α = α0(T − T ∗
2 ), T ∗

1 are T ∗
2 are the critical

temperatures for a hypothetical second order transition in
the absence of any cross-coupling and cubic terms. Here we
take T ∗

1 > T ∗
2 . All other coefficients, as well as a0, and α0

are assumed to be temperature independent. δ and γ are
coupling constants. A negative value of δ increases smec-
tic ordering and favors the SmC∗ phase over the isotropic
phase. χ0 is the dielectric susceptibility. L1, L2 and L3

are the orientational elastic constants. The isotropic gra-
dient terms in Eq. (4) guarantee a finite wavelength q0 for
the smectic density wave. Symmetry would allow another
term, b3

2 |∇i∇jψ|2, which however does not lead to any
new contribution (compared to that ∼ b2) for the smec-
tic phase and has therefore been omitted here. εijk is the
antisymmetric third-rank tensor. The chiral character of
the SmC∗ phase results in the pseudoscalar first order spa-
tial derivative term in the free energy. Thus the coefficient
L3 is analogous to the coefficient of the Lifshitz-invariant
term and induces the helical modulation of the SmC∗

phase. We assume L3 < 0. The gradient terms ∼ e, f
and ∼ h involving Qij govern the relative direction of the
layering with respect to the director and lead to the tilt
angle of the SmC∗ phase. In general a negative value of
e favors the stability of tilted smectic phases. Here gijkl

takes the form gijkl = g(δikδjl + δilδjk). The coefficient g
is analogous to the flexoelectric coefficient and would be
negative for P > 0 and positive for P < 0. A coupling
term ∼ P2 |ψ|2 could also be added in the free energy (4).

Now we consider the phases in which the nematic and
smectic order are spatially homogeneous, i.e. S =const.
and ψ0=const., and for the smectic phase a spatially con-
stant wave vector q0 characterizing the layering. The sub-
stitution of Qij , ψ and P in Eq. (4) leads to the free energy
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density

F = F0 +
3
4
AS2 − 1

4
BS3 +

9
16
CS4 +

1
2
αψ2

0 +
1
4
βψ4

0

+
1

2χ0
P 2

0 +
3
4
δS2ψ2

0 −
1
2
γP 2

0 S +
9
4
L

′
S2q2 sin2 θ

−9
8
L2S

2q2 sin4 θ +
9
4
L3S

2q sin2 θ +
1
2
b1ψ

2
0q

2
0

+
1
2
b2ψ

2
0q

4
0 +

1
4
eψ2

0q
2
0S(3 cos2 θ − 1)

+
1
8
fψ2

0q
2
0S

2(3 cos2 θ + 1) +
3
2
gSP0q sin θ cos θ

+
1
8
hψ2

0q
4
0S

2(3 cos2 θ − 1)2 (5)

where L
′
= (L1 +L2/2) and C = (C1 +C2/2). The sign of

the coefficients a, α0, B, C, β, b1, b2, L1 and L2 is assumed
to be positive. The presence of the cubic terms (∼ B,∼ γ
and ∼ e) signals the first order character of the I - SmC∗

transition.
Equilibrium values of S, ψ0, P0, q0, q, and θ are de-

termined from the condition that F should be a minimum
with respect to all these variables. We obtain
I) Isotropic phase: S = 0, ψ0 = 0, P0 = 0, q0 = 0, q = 0,
θ = 0.
II) Cholesteric (Ch) phase :
Sch = B

6C

[
1 +

(
1− 24A1C

B2

)1/2
]
, P0 = 0, q0 = 0, ψ0 = 0

qch = (−L3/2L1), θch = π/2.
III) Smectic A (SmA) phase (for h = 0):
SA 6= 0, ψ2

0 = − 1
β

(
α∗ − e∗SA + 3

2δ
∗S2

A

)
,

q20 = − 1
2b2

(b1 + eSA + fS2
A), P0 = 0, q = 0, θ = 0.

where SA is defined by:
2α∗e∗

3β + 2A∗
1SA −B∗S2

A + 3C∗S3
A = 0

IV) SmC∗ phase : SC∗ 6= 0, ψ0 6= 0, P0 6= 0, q0 6= 0,
qC∗ 6= 0, θC∗ 6= 0 (for details cf. the following section).

We use the abbreviations A1 = A − 3L2
3

4L1
, α∗ = α −

(b21/4b2), f
∗ = (fb1)/(2b2), e∗ = (eb1)/(2b2), δ∗ = δ −

(e2/6b2)− (2f∗/3), A∗
1 = A− (δ∗α∗/β)− (e∗2/3β), B∗ =

B − (3δ∗e∗/β) − (efα∗/βb2) and C∗ = C − δ∗2/(β) +
(2f/9βb2)(α∗f − 2ee∗). The renormalized coefficients B∗

and C∗ are now temperature dependent.
Eq.(5) seems to allow for two additional and unphys-

ical phases, S = 0, ψ0 6= 0, P0 = 0, q0 = 0, q = 0, θ = 0
and S = 0, ψ0 6= 0, P0 = 0, q0 6= 0, q = 0, θ 6= 0. The
first is a pseudo-isotropic one that has a nonzero smectic
order parameter modulus, but an infinite layer spacing.
This phase is clearly ruled out by the condition that q0
has to be finite, in order to describe any reasonable smec-
tic phase. The second is a pseudo-smectic C one without
a nematic order, but with a ”universal” value of the tilt
angle, cos2 θ = 1/3, that does not depend on the material
nor on temperature and pressure. This phase is eliminated
by using a general biaxial form for the nematic order pa-
rameter Qij (cf. appendix).

The necessary conditions for the different phases to be
stable are :

∂2F

∂S2
> 0,

∂2F

∂ψ2
0

> 0,
∂2F

∂P 2
0

> 0,

∂2F

∂θ2
> 0,

∂2F

∂q20
> 0,

∂2F

∂q2
> 0,

∂2F

∂y2
· ∂

2F

∂z2
−

(
∂2F

∂y∂z

)2

> 0,

det
∥∥∥∥ ∂2F

∂xi∂xj

∥∥∥∥ > 0 (6)

where y, z, xi,j ∈ {S, ψ0, P0, θ, q0, q}, i, j = 1, ..., 6. In ad-
dition, all the appropriate (5 × 5), (4 × 4) and (3 × 3 )-
subdeterminants must be positive as well.

For the isotropic phase the stability conditions are α >
0 and A > 0. The cholesteric phase is stable if 2α+3δS2

ch >
0, 24A1C < B2, and L3 < 0. The stability conditions of
the SmA phase are the same as in our previous papers [8,
9]. Hence we will discuss only the stability conditions of
the SmC∗ phase in the following.

By lowering the temperature from the isotropic phase,
the above three liquid crystalline phases can appear se-
quentially or in partial sequence. Since however phase
transitions like isotropic to cholesteric or to SmA or the
transitions cholesteric to smectic A or to smectic C∗, and
the smectic A to smectic C∗ transition have already been
discussed in the literature, we will concentrate on the di-
rect isotropic to smectic C∗ phase transition in what fol-
lows.

2.3 The SmC∗ phase and the I-SmC∗ phase transition

SC∗ 6= 0, ψ0 6= 0, P0 6= 0, q0 6= 0, qC∗ 6= 0, θC∗ 6= 0 are
the equilibrium conditions for the SmC∗ phase. The SmC∗

phase is in competition with possible isotropic, cholesteric
and SmA phases. As usual, the phase with the lowest free
energy is the stable one.

After minimizing the free energy (5) with respect to
P0, the spontaneous polarization in the SmC∗ phase can
be expressed as

P0 = −3
4
gSqχ0M sin 2θ (7)

where M = (1 − γχ0SC∗)−1. Equation (7) shows that a
positive value of P0 can only be obtained for g < 0. After
minimization of Eq. (5) with respect to q and inserting
the value of P0 from Eq. (7), the temperature dependence
of the wave vector of the helix in the SmC∗ phase can be
written as

q = − L3

2L1 + (L2 − g2χ0M) cos2 θ
(8)

where the temperature enters through the temperature
dependent tilt angle and through S∗C in M . For a non-
chiral material, L3 = 0, hence q = 0. Equation (8) shows
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that L3 < 0, since the denominator is always positive. The
pitch of the helix of the SmC∗ phase is

Z = −2π
L3

[2L1 + (L2 − g2χ0M) cos2 θ] (9)

Equation (9) shows that the pitch does not diverge at
the I-SmC∗ phase transition. Measurements in most of
the SmC∗ phases showed a temperature dependence of
the ratio P0/θ. For the special case of a small tilt angle
(sin θ ≈ θ � 1) the ratio P0/θ can be expressed as

P0

θ
=

3
2
gχ0L3

SC∗

2L′M−1 − g2χ0
(10)

showing that the variation of P0/θ with temperature in
the SmC∗ phase depends on the temperature variation of
the orientational order parameter SC∗ .

The value of the smectic ordering and the wave vec-
tor of the density modulation in the SmC∗ phase can be
expressed as

ψ2
0 = − 1

β

(
α+

3
2
δS2

C∗ −
x2

4u

)
(11)

q20 = − x

2u
(12)

with

x = b1 + eSC∗(1− 3
2

sin2 θ) + fS2
C∗(1−

3
4

sin2 θ)

u = b2 + hS2
C∗(1−

3
2

sin2 θ)2

Equation (11) shows that a negative value of the cou-
pling constant δ increases the positional ordering ψ0 in
the SmC∗ phase. The variation of the tilt angle θ in the
SmC∗ phase can be calculated after minimizing Eq. (5)
with respect to θ and partially inserting the values of ψ0,
P0, q0 and q. This results in a complicated algebraic equa-
tion for sin2 θ,

sin2 θ =
2
3

+
2e+ fSC∗

6h q20 SC∗
+

q2

2hψ2
0 q

4
0

(2L′ − g2χ0M) (13)

which is implicit, since q2, q20 , and ψ2
0 depend on θ, Eqs.(8)-

(12).
The last necessary condition for the existence of the

SmC∗ phase is (∂F/∂S) = 0 resulting in

0 = 2ASC∗ −BS2
C∗ + 3CS3

C∗ + 2δSC∗ψ2
0

−3
2
γq2g2χ2

0M
2S2

C∗ sin2 θ cos2 θ + 3L3qSC∗ sin2 θ

+ψ2
0q

2
0

(
e
[2
3
− sin2 θ

]
+ fSC∗

[4
3
− sin2 θ

]
+3hq20SC∗

[2
3
− sin θ

]2) (14)

which is implicit again.

Some of the stability conditions (6) for the SmC∗ phase
read

eψ2
0q

2
0(3 cos2 θ − 1) < −3BS2

C∗ + 18CS3
C∗

+2γP 2
0

M + 1
M − 1

(15)

α+
3
2
δS2

C∗ − b2q
4
0 <

1
4
hq40SC∗(3 cos2 θ − 1)2 (16)

b1 + eSC∗ + fS2
C∗ <

3
4
(2eSC∗ + fS2

C∗) sin2 θ (17)

L2q
2 sin2 2θ < hψ2

0q
4
0 sin2 2θ + g2q2χ0M (18)

χ−1
0 > γSC∗ (19)

2L1 > L2 cos2 θ (20)

In order to get an explicit algebraic equation for SC∗

alone, we make the assumption that the influence of the
chiral terms on the tilt angle is small. This is justified by
q2 � q20 and allows to disregard the last contribution to
sin2 θ in Eq.(13). Then Eqs.(12) and (13) can be solved
simultaneously by a systematic power expansion in SC∗

leading to

q20 = − 1
4b2

(2b1 + fS2
C∗) + O

(q2
q20

)
(21)

ψ2
0 = − 1

β
(α∗∗ − ef

4h
SC∗ +

3
2
δ∗∗S2

C∗) + O
(
S4

C∗ ,
q2

q20

)
(22)

q = −3
2
L3h

∗

L′2e
SC∗

(
1− f∗∗SC∗ +

[ f

2b1
+ f∗∗2

]
S2

C∗

)
+O

(
S4

C∗ ,
q2

q20

)
(23)

with α∗∗ = α∗ − e2/4h, δ∗∗ = δ − f∗/3 − f2/24h, f∗∗ =
(1/2e)(f + h∗6), with h∗n = h∗(1 + nL1/L

′
2) and L′2 =

L2 − g2χ0M , h∗ = hb1/b2 and the other singly ‘starred’
coefficients defined before Eq.(6). For the tilt angle we get

sin2 θ =
1

6h∗
(−4eS−1

C∗ + 4h∗ − 2f +
2ef
b1

SC∗

+
f2

b1
S2

C∗ −
ef2

b21
S3

C∗) + O
(
S4

C∗ ,
q2

q20

)
(24)

Now the substitution of q, ψ0, q0 and sin θ from Eqs.
(21)-(24) into Eq. (14) leads to

0 = D+2A∗∗SC∗−B∗∗S2
C∗+3C∗∗S3

C∗+O
(
S4

C∗ ,
q2

q20

)
(25)

which determines the nematic order parameter in the SmC∗

phase and where

A∗∗ = A+
3L2

3

2L′2
− 1
β

( e2f2

48h2
+ α∗∗δ∗∗

)
B∗∗ = B +

9h∗2
2e

L2
3

L′2
− 3L2

3

2L′22
γg2χ2

0M
2 − 3ef

4βh
δ∗∗

C∗∗ = C +
3
2e
L2

3

L′2
f∗∗h∗2 −

3L2
3

4L′22
h∗4γg

2χ2
0M

2

+
1
β

( f2

18b2
α∗∗ − δ∗∗2

)
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and D = efα∗∗/6βh. Obviously, SC∗ cannot be zero and
all expressions above, in particular sin2 θ, are well be-
haved. Eq.(25) is the extremum of an effective free energy
in terms of S alone, which reads up to fourth order

F = F ∗
0 +

3
4
DS +

3
4
A∗∗S2 − 1

4
B∗∗S3 +

9
16
C∗∗S4. (26)

The spinodal of the SmC∗ phase is then given by

2A∗∗ − 2B∗∗S + 9C∗∗S2 = 0 (27)

We will now discuss the influence of the chiral terms
on the tilt angle, neglected so far. For that purpose we
put f = 0 for simplicity. Taking then into account the q2
contribution in Eq.(13) we find that it does not influence
the layer ordering ψ2

0 , nor does it change the explicit ex-
pression (23) for q. There are contributions ∼ L2

3(2L1 +
L′2)/L

′2
2 (with L′2 = L2 − g2χ0M) to sin2 θ in order S2

and to q20 in order S3 and appropriate contributions to
B∗∗ and C∗∗. As expected they are of little influence.

Although in the original Landau-like expansion of the
free energy for all order parameters no changes of the val-
ues of B and C are allowed as one approaches the tran-
sition temperature, the renormalized coefficients B∗∗ and
C∗∗ are now temperature dependent, since all order pa-
rameters except for SC∗ have been eliminated. Equation
(25) gives the temperature dependence of the orientational
order parameter SC∗ in the SmC∗ phase.

The cubic coefficient B∗∗ in the free energy (26) shows
that the I-SmC∗ phase transition must always be first
order in mean-field approximation. The transition is ac-
companied by a jump of the orientational order param-
eter SI−C∗ at TI−C∗ . In addition, there is also a jump
in ψ0, θ and P0 at the I-SmC∗ transition temperature
TI−C∗ > T ∗

I−C∗ , where T ∗
I−C∗ is the supercooling temper-

ature. All these order parameters jump simultaneously at
the I - SmC∗ transition. Thus within the framework and
assumptions of the presented Landau model there is al-
ways a direct I - SmC∗ transition for suitable parameter
values.

In our previous paper on the direct I - SmC phase tran-
sition [9] instead of the f1 term, an h term, as in Eq.(4)
of the present paper, should have been used. This impli-
cates minor corrections to the former paper, in particu-
lar the new assignments (in the notation of [9]) b∗1 = b1,
α∗ = α − (b21/4b2) − (e21/4h), and S0 = e1b2/hb1. This
does not change the structure of the results, nor any of
the conclusions drawn.

3 Conclusion

We have presented here a Landau-like theory analysis of
the I-SmC∗ transition. We showed how different phases
can be explained from a single model free energy expres-
sion. We have derived expressions of the conditions for the
direct I - SmC∗ transition to occur. The coupling between
the order parameters is found to play a crucial role in de-
termining the phase behavior and the order of the transi-
tion. Although we have made some progress qualitatively

to compare the theoretical results with available exper-
imental results, there is still a lack of basic data which
would make possible a more complete quantitative com-
parison with the theory.
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Appendix A. Biaxial nematic order

Smectic C liquid crystals are generally biaxial due to the
tilt of the nematic preferred direction ni away from the
layer normal q−1

0 ∇iΦ. The biaxiality is rather small and
often neglected. This is even more appropriate for smectic
C∗ phases, where the helical structure somewhat reduces
the biaxiality. Therefore, we have used an uniaxial nematic
order (1) in the preceding sections. Here we will show that
any finite biaxial order eliminates the unphysical pseudo-
smectic C phase discussed in Sec. (2.2), even if this biaxial
order is so small that is has no reasonable effect on the
smectic C∗ phase. To that end we use the biaxial nematic
order parameter [10]

Qij =
S

2
(3ninj − 1) + µ(mimj − lilj) (A.1)

with the biaxial order parameter modulus µ. The direc-
tions are defined as

n = (ex cos qz + ey sin qz) sin θ + ez cos θ
l = (ex cos qz + ey sin qz) cos θ − ez sin θ

m = ex sin qz − ey cos qz (A.2)

where mi is in-plane (perpendicular to both, ni and ∇iΦ,
but along the polarization Pi), while l ≡ n×m.

With this form of the nematic order the free energy
(4) gives

F = F0 +A
(

3
4S

2 + µ2
)
−B

(
1
4S

3 − µ2S
)

+C
(

3
4S

2 + µ2
)2

+
1
2
αψ2

0 + 1
4βψ

4
0 +

1
2χ0

P 2
0

+δψ2
0

(
3
4S

2 + µ2
)
− γP 2

0

(
1
2S − µ

)
+(L1q

2 + L3q)
(
[ 94S

2 − 3Sµ− 3µ2] sin2 θ + 4µ2
)

−1
2
L2q

2
(

3
2S + µ

)2 sin2 θ cos2 θ +
1
2
b1ψ

2
0q

2
0

+
1
2
b2ψ

2
0q

4
0 +

1
4
eψ2

0q
2
0

(
S[3 cos2 θ − 1]− 2µ sin2 θ

)
+

1
8
fψ2

0q
2
0

(
S2[3 cos2 θ + 1] + 4µ[S + µ] sin2 θ

)
+gqP0

(
3
2S + µ

)
sin θ cos θ

+
1
2
hψ2

0q
4
0

(
S[3 cos2 θ − 1]− 2µ sin2 θ

)2
(A.3)
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which is the biaxial generalization of Eq.(5).
If we now look for the pseudo-smectic C phase with

ψ0 6= 0, q0 6= 0, θ 6= 0, but S = 0, P0 = 0, q = 0, the
minimization of (A.3) with respect to S and µ leads to
the conditions 3 cos2 θ−1 = 0 and sin2 θ = 0, respectively,
which cannot be fulfilled simultaneously and, thus, rule
out such an unphysical solution.
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