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Developments in the macroscopic behavior of cholesteric liquid crystals, fo-

cusing mainly on low molecular weight materials, are reviewed in this arti-

cle. Among the topics covered are experimental and theoretical results on

Lehmann-type effects, which are only possible for fluid phases that possess a

handedness macroscopically. It is summarized how such effects can be obtained

using an electric field as well as gradients of temperature and concentration

as external forces. The static analogues of these effects involving variations of

density, entropy density and concentration in mixtures are also discussed.

Other aspects covered are nonequilibrium phenomena at a moving cholesteric

- isotropic interface as well as (static and dynamic) flexoelectric effects in-

cluding a critical discussion how these flexoelectric effects can be determined
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experimentally.

Finally various types of electromechanical couplings in cholesteric liquid crys-

talline polymers and elastomers including piezoelectricity and the novel con-

cept of rotato-electricity, which cannot exist in low molecular weight cholesteric

liquid crystals, are briefly discussed. For reviews summarizing earlier work on

the flow behavior of cholesteric liquid crystals as well as the thermo- and

electromechanical properties see de Gennes and Prost (1993), Chandrasekhar

(1992), and Coles (1997).

1 Lehmann-type Effects

Lehmann (1900) described the observation of a rather unusual effect in a

cholesteric liquid crystal: when a cholesteric droplet is submitted to a thermal

temperature gradient parallel to its helical axis, the director, n̂, the average

molecular orientation, shows a uniform rotation. This observation was not

confirmed until the 1980s (Madhusudana and Pratibha, 1987) when a similar

phenomenon was observed in an external DC electric field for flat cholesteric

drops completely immersed in the isotropic liquid phase. In a subsequent pa-

per (Madhusudana and Pratibha, 1989) analyzed in detail how sensitive the

phenomenon of Lehmann rotation is with respect to the difficulty of obtain-

ing a sufficiently weak anchoring boundary condition for the director at the

cholesteric surface. Only in the case of practically zero anchoring energy a

Lehmann rotation could be observed in a controlled way.
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Classically (e.g., de Gennes and Prost 1993, and Chandrasekhar 1992) the

Lehmann phenomenon is described in the framework of Leslie’s equations. For

a layer of a cholesteric liquid crystal under the influence of a field E parallel

to the helical axis (z-direction) there is no macroscopic flow. The dynamic

equation for the angle φ(z, t) between the director n̂ and a fixed axis (say x)

in the plane of the layer then reads

γ1
∂φ

∂t
= K2

∂2φ

∂z2
− νE (1)

where K2 is the twist elastic constant, 1/γ1 the director diffusion coefficient, E

the strength of the applied field and ν the dissipative dynamic cross-coupling

coefficient associated with the Lehmann rotation. This cross-coupling is only

possible for systems having a ground state which violates parity macroscop-

ically: the cholesteric differs from its mirror image. To extract the Lehmann

rotation phenomenon from eq.(1), one considers a film with thickness D with

‘free’ boundary conditions, meaning that there is zero surface torque on the

director. For sample surfaces located at z = 0 and z = D this condition yields

the following boundary conditions for φ

∂φ

∂z
|z=0 =

∂φ

∂z
|z=D = q0 (2)

where q0 is the equilibrium wave vector associated with the helical pitch P0.

As a solution of eq.(1) satisfying the boundary conditions given in eq.(2) one
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obtains

φ = q0z − νE

γ1

t + C (3)

From eq.(3) one reads off that the director rotates at a constant rate νE/γ1.

Following the observation of the Lehmann rotation in DC electric fields Brand

and Pleiner (1988) reanalyzed the Lehmann phenomenon in the framework

of hydrodynamics, which had been developed for cholesteric liquid crystals

by Lubensky (1972) and by Martin, Parodi and Pershan (1972). It emerges

from their study that the classical Lehmann effect arising when a temperature

gradient is applied parallel to the helical axis of the cholesteric droplet is not

only due to a dissipative dynamic cross-coupling, but that there is also a static

contribution coupling temperature and director orientation. Specifically Brand

and Pleiner (1988) find for the generalized free energy the contributions (using

the local description, which is appropriate for cholesteric phases with a large

pitch and for cholesteric films with a sample thickness small compared to the

pitch)

F = FN + K2q0(n̂ · curln̂ + q0) − (τσδσ + τρδρ + τcδc)q0(n̂ · curln̂ + q0)(4)

Here δσ, δρ and δc are the variations of entropy, density and concentration

(in mixtures of thermotropics and for lyotropic materials). FN contains all the

terms already present in nematic liquid crystals. As it turns out (see below) the

contributions proportional to τσ, τρ and τc enter into Lehmann-type effects. For
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the dissipative parts relevant to Lehmann-type effects the entropy production

takes the form in lowest order

R = RN + q0(ψT ∇T + ψc∇µ + ψEE) · (n̂0 × h) (5)

where RN contains all the contributions present in a nematic phase. The molec-

ular field h is obtained via h ≡ −(δ/δn̂)
∫

FdV , µ is the chemical potential,

and ψT , ψc and ψE are the coefficients of the contributions associated with

Lehmann-type effects. Note that ψT = ν/γ1 for ν in eq.(1).

Using again free boundary conditions, one obtains for the angular velocity

ω ≡ φ̇ of the director for an applied temperature gradient:

ω = q0(ψT + CV T−1
0 τσ/γ1) (6)

where CV is the specific heat at constant volume. As one reads off immediately

from eq.(6), the static (∼ τσ) as well as the dissipative dynamic (∼ ψT ) contri-

butions enter. Therefore these two contributions cannot be separated by the

classical Lehmann experiment in a temperature gradient parallel to the helical

axis. The same situation arises for concentration gradients or gradients in the

chemical potential (see sect. 2). The situation is different for the case of an

external electric field studied experimentally by Madhusudana and Pratibha

(1987,1989). In this case there is no static contribution and one obtains for

the angular velocity ω:

ω = q0ψE (7)
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and thus ψE can be determined directly. For an external density gradient there

is no dissipative cross-coupling and the rotation velocity ω reads:

ω = q0(τρ − CV T−1
0 τσ

∂T

∂ρ
)/γ1 (8)

This result is a prediction so far, which one could test by applying small

pressure gradients. Further details can be found in Brand and Pleiner (1988).

All results presented for cholesteric liquid crystals are applicable equally well

for chiral smectic phases with a helical superstructure and complete or partial

in-plane fluidity.

2 Nonequilibrium Phenomena at a Moving Cholesteric - Isotropic Interface

Interfacial pattern formation during directional growth from the isotropic liq-

uid to the cholesteric liquid crystal has been studied by Cladis et al. (1991)

and by Brand and Cladis (1994). While in equilibrium a cholesteric liquid

crystal is characterized by its handedness and a characteristic length scale,

the pitch P0, for an isotropic-cholesteric interface moving in a temperature

gradient G, an instability with a characteristic length and time scale can set

in for a certain range of temperature gradients G and pulling speeds v. When

the wavenumber q0 associated with the helical pitch becomes comparable but

incommensurate with the wavenumber q arising due to the nonequilibrium

driving force, the elastic response of the cholesteric state is out of phase with

the driving force and an oscillatory mode can result. As the pulling speed
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is increased several instabilities are observed. While the first instability is a

Hopf bifurcation associated with a finite frequency and a finite wave vector at

onset, the second instability gives rise to a breathing mode, which is shown

in Fig.1. From Figs.1 and 2 one can see that the helical twist axis is not

constant in space, but varies on a surface. In Fig.1 one observes an array of λ-

defect lines (one of the characteristic type of defect lines for cholesteric liquid

crystals (e.g., de Gennes and Prost 1993) shed by the interface. In this state

oscillations of neighboring defect lines are in antiphase whereas next-nearest

neighbors are in phase. We note that for Fig.1 the defect oscillatory motion

is nearly 1D, while for higher pulling speeds, v, it becomes 2D. One observes

space-time helices and a dislocation (Fig.2). It is important to note that none

of these phenomena can be observed in achiral liquid crystalline phases such

as nematic liquid crystals, which have neither a handedness nor a macroscopic

intrinsic length scale.

At sufficiently high pulling speeds and temperature gradients the isotropic -

cholesteric interface flattens out again. It turns out, however, that in this case

one can obtain for cholesteric liquid crystals nonequilibrium states that are

characterized by long spatial correlations of the director phase that rotates at

fixed frequency. This regime has been called the forced phase winding regime

(Brand and Cladis 1994) (Fig.3). Analysis of the pattern depicted in Fig.3

reveals a large coherence length both parallel and perpendicular to the inter-

face. This director rotation about an axis parallel to the applied temperature
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Fig. 1. One video frame showing the breathing-mode pattern decorated behind the
interface by disclination lines viewed with polarizers crossed at 45◦ to the sides of
the frame. The λ-defect is seen as the wavy bright line surrounded by two wavy
dark lines. The black region at the extreme left is the isotropic phase. The bright
band next to it is the cholesteric - isotropic meniscus. Inset: The temperature and
length scale as well as the frame of reference used in this section. (Fig2a of Cladis
et al.(1991))

Fig. 2. Space-time helices of the breathing mode decorated by oscillating λ-defects
observed for v = 70µm/s and vx ∼ 3.45µm/s. (Fig.2b of Cladis et al. (1991))
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gradient, which is reminiscent of the Lehmann effect, is possible in cholesteric

liquid crystals, because – as discussedabove – symmetry allows for the cou-

plings between temporal variations of the director phase and temperature as

well as concentration gradients. It turns out that the latter are dominant in

the present system: the thermal length scale set externally is much larger than

the length scale due impurity diffusion. In fact this experiment can be used

to extract an estimate for the coupling constant. At even higher pulling speed

the wavelength of the pattern emerging behind the interface increases, but the

coherence of the pattern decreases. Above a critical speed phase coherence is

lost and a disordered liquid crystalline state emerges (Fig.4). That this state,

which is disordered and has a frozen-in structure, is similar to a glassy state is

revealed when the relaxing defect structures anneal (right hand side of Fig.4).

This state has been called an orientational glass by Brand and Cladis (1994),

since the system does not have enough time to organize itself in the coherent

fashion observed at equilibrium or at smaller pulling speeds. The quenched

state results, when there is insufficient time to pass the information about the

orientational order across the interface over macroscopic distances.

3 Static and Dynamic Flexoelectric Effects

Flexoelectricity in nematic liquid crystals is a well studied field in liquid crystal

science (e.g., de Gennes and Prost 1993, and Chandrasekhar 1992). In the
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Fig. 3. Pattern behind flat interface for a sample thickness d = 63µm, v = 40µm/s,
and G = 30K/cm. The isotropic liquid is the featureless region to the left and
the regular forced phase winding with large coherence length perpendicular to the
interface is to the right. The lines perpendicular to the interface are localized regions
with an apparent phase mismatch of the director. (Fig.1 of Brand and Cladis (1994))

Fig. 4. Orientational glass patterns behind the flat interface in a constant temper-
ature gradient. Higher temperatures are to the left. (a) Growing the orientational
glass state at v = 70µm/s ‖ G. (b) Defect structures observed as the orientational
glass anneals in the temperature gradient during directional melting at v = 70µm/s.
Sample thickness, d = 80µm, temperature gradient, G = 45K/cm. The arrow in
the black box gives the direction of motion of the interface, which is outside the
field of view in (b). (Fig.2 of Brand and Cladis(1994))
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generalized energy flexoelectricity leads to an additional term

Ff =
∫

dV eijkEk∇inj (9)

where eijk is given for uniaxial nematics by eijk = e1δ
⊥
ijnk+e3δ

⊥
jkni. In the local

description of cholesteric liquid crystals flexoelectricity takes the same form.

Flexoelectricity complements Frank’s free energy for director deformations and

the dielectric term.

Experimentally Patel and Meyer (1987) have investigated flexoelectricity in

cholesterics by applying a static electric field E perpendicular to the helix axis.

According the Patel and Meyer this leads to a periodic splay-bend pattern in

the helix, which allows the determination of the flexoelectric coefficient. An

analysis by Brand and Pleiner (1997) shows that the situation in the geometry

studied by Patel and Meyer is, in general, rather complicated. First, Brand and

Pleiner found that the flexoelectric contribution to the generalized energy is a

surface effect. Second, it turns out that depending on the boundary conditions

and geometry one can find experimentally a rotation of the optical axis or not.

Such a rotation of the optical axis with respect to the laboratory frame set by

the helix in the field-free case and the external field has been found by Patel

and Meyer.

Features that add to the complexity of the behavior of cholesteric liquid crys-

tals in an electric field are the dynamic effects coupling director orientation to

the external electric field and its gradients. There is a dissipative analogue of
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the flexoelectric effect already in nematic liquid crystals (Brand and Pleiner

1984), which as a contribution to the dissipation function takes the form

Rf = −ζE
ijkhi∇jEk (10)

where ζE
ijk has the structure ζE

ijk = ζE(δ⊥
ijnk + δ⊥

iknj) assuming the quasi-

static condition curlE = 0 holds. In the local description of cholesterics one

has the same dissipative contribution. As discussed in detail by Pleiner and

Brand (1997) the static and dynamic flexoelectric effects appear as linear

combinations in all dynamic measurements aimed at measuring the static

flexoelectric coefficients.

In cholesteric liquid crystals the situation becomes even more complex due to

the Lehmann-type effects discussed above. One has in the dissipation function

related to electric effects the cross-coupling term

RL = q0ψEE · (n̂0 × h) (11)

It must be emphasized that this Lehmann-type dissipative cross-coupling con-

tains even one gradient less than the dynamic analogue of the flexoelectric

effect. The detailed analysis by Brand and Pleiner (1997) shows that the term

∼ ψE is crucial for the interpretation of the experiments done by Patel and

Meyer (1987). While Patel and Meyer just minimized the sum of the elas-

tic and the flexoelectric energies to deduce the flexoelectric coefficient in a

cholesteric, Brand and Pleiner showed that there is no static, but rather a
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stationary solution only, which also involves the Lehmann-type term ∼ ψE.

As a consequence it is not possible to extract e1 + e3 from these experiments

without knowledge of ψE. For a detailed discussion the interested reader is

referred to Brand and Pleiner (1997).

4 Rotato-Electricity and Piezoelectricity in Cholesteric Polymers and Elas-

tomers

In cholesteric liquid crystalline polymers and elastomers, in addition to the

usual conserved quantities and the orientational degrees of freedom, one has

macroscopic variables, which are associated with the deformations of the tran-

sient network and - for liquid crystalline elastomers - with the permanent net-

work. A recent review of the physical properties of liquid crystalline elastomers

can be found in Brand and Finkelmann (1997). As pointed out by de Gennes

(1980) for nematic gels there are relative rotations between the director and

the gel as macroscopic variables - in addition to the director n̂ and the strain

tensor εij familiar from the elasticity of solids and gels. These relative rota-

tions lead to coupling terms which exist neither in low molecular weight liquid

crystalline systems nor in solids and gels. The corresponding contributions in

the generalized energy take up to quadratic order the form (de Gennes 1980):

Frel =
∫

dV (
1

2
D1Ω̃iΩ̃i + D2Ω̃iεjknjδ

⊥
ik) (12)
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where ui is the displacement vector, εij = 1
2
(∇iuj + ∇jui) the strain tensor,

Ωij = 1
2
(∇iuj − ∇jui) and where Ω⊥

i = njΩij with niΩ
⊥
i = 0. The relative

rotations Ω̃i are then introduced via Ω̃i = δni − Ω⊥
i with n̂ · δn = 0.

In systems which break mirror symmetry spontaneously such as cholesteric

and chiral smectic liquid crystals the existence of relative rotations for their

elastomeric counterparts allows electromechanical cross-couplings, which are

not possible in other systems. The most unusual effect among these is cer-

tainly rotato-electricity (Brand, 1989), which in the generalized energy for a

cholesteric elastomer gives rise to the contribution (∼ ζR)

Frot =
∫

dV [ζR(δφ − Ω)q0pjDj +
1

2
D1(δφ − Ω)2] (13)

where δφ and Ω = piεijkΩjk are the variables characterizing, respectively, the

rotation of the director and of the polymer network around pi, the helical axis

in the cholesteric phase. Di is the dielectric displacement conjugate to the elec-

tric field Ei. The second contribution ∼ D1, too, is specific to liquid crystalline

polymers and elastomers, has no counterpart in low molecular weight systems

and contains one of the contributions proportional to D1 in eq.(12). There is

a dissipative analogue to rotato-electricity expressed by the contributions to

the dissipation function

Rrot =
1

2γ
W 2 + ξRWq0piEi (14)
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with W the conjugate to the relative rotations δφ − Ω. To study the effect

of rotato-electricity one applies an electric field parallel to the helical axis. A

stationary state is found, which incorporates the static and dissipative rotato-

electric effects for relative rotations

(δφ − Ω) = −q0pjEj

D1E

(ε‖ζR + γ ξR) (15)

where ε‖ is the dielectric constant taken along the helical axis and D1E = D1−

ε‖(ζRq0)
2. Depending on the boundary conditions eq.(15) predicts a rotation

of the director or the network. In samples with a thickness small compared to

the pitch it should be easy to detect this relative rotation optically.

The other group of electromechanical effects, which is of potential interest for

applications as soft sensors, is related to piezoelectricity. This effect is well

known for crystals lacking inversion symmetry such as quartz. They represent

in crystals a direct coupling between the strain tensor and the electric field. For

cholesteric liquid crystalline polymers and elastomers the interest derives from

the fact that they have reduced fluidity compared to low molecular weight

systems. In a generalized energy piezoelectricity gives a contribution of the

structure

Fpiezo =
∫

dV ζP
ijkq0Eiεjk (16)

As discussed by Pleiner and Brand (1993) such a contribution exists for polar

cholesterics for which the polar axis coincides with the helical axis. In such a
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case one has globally C∞ symmetry in contrast to the ordinary case of non-

polar cholesterics for which the helical axis is nonpolar and which has D∞

symmetry. To realize this low symmetry globally (which corresponds locally

to C1 or C2 symmetry) is much easier to achieve in cholesteric liquid crys-

talline polymers and elastomers (see Pleiner and Brand (1993) for details).

For polar cholesterics, which are globally of uniaxial symmetry, ζP
ijk takes the

form ζP
ijk = ζP

1 pipjpk + ζP
2 piδ

⊥
jk + ζP

3 (pjδ
⊥
ik + pkδ

⊥
ij). In such a phase one thus

encounters longitudinal piezoelectricity with respect to the helical axis, trans-

verse piezoelectricity and shear piezoelectricity in any plane containing the

helical axis.

For polar cholesterics with a finite electric conductivity there exists a dissipa-

tive analogue of the static piezoelectric effect in the entropy production. As a

consequence an applied external electric field leads to stationary (rather than

static) deformation states, which are given both by the static as well as the

dissipative piezoelectric coefficients.
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