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Abstract

We discuss flexoelectricity in cholesteric liquid crystals. In particular we point out that

experimental results obtained by Patel and Meyer can be understood as surface effects. In

addition we discuss similarities and differences between static and dynamic effects associ-

ated with flexoelectricity in cholesteric and nematic liquid crystals.
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Flexoelectricity in nematic liquid crystals is a phenomenon that has been studied in

many publications for over two decades [1-11]. In 1984 it became clear that there is also

a dissipative analogue to flexoelectricity [12], although this contribution is very often not

taken into account when analyzing the experimental results, even when they are obtained

by dynamic methods. In the present note we discuss flexoelectric effects in cholesteric

liquid crystals, for which there is only very little previous work [13-15]. Basically the work

presented here is an extension and generalization of our earlier, unpublished work [14]. In

addition to flexoelectricity we critically analyze how dynamic experiments in cholesteric

liquid crystals are not only modified by the dissipative analogue of flexoelectricity, but by

the electric analogue [11,16,17] of the Lehmann effect [18] as well.

For uniaxial nematics the preferred direction is characterized by a director n, which

does not distinguish between head and tail. Accordingly the variables that emerge in

addition to the conserved quantities of an isotropic liquid are the variations δn of the

director, i.e. changes of n with

δn · n = 0 (1)

Condition (1) is equivalent to using a normalized length for the director n (n2 = 1). In the

local description of cholesteric liquid crystals [11] one uses the same variables, although

strictly speaking only one additional hydrodynamic variable exists [19,20]. The presence

of the helix is taken into account by implementing the pseudoscalar quantity n · curl n,

which reflects the fact that cholesteric liquid crystals with one screw sense are different

from their mirror image.

The elastic energy associated with deformations of the director field takes the clas-

sical form [11,21-23]

2Fn =
∫

dτ [K1(divn)2 + K2(n · curl n + q0)2 + K3(n× curl n)2] (2)

where q0 = −(n0 · curl n0) is the equilibrium wavevector of the helix. The flexoelectric
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term introduced for nematics in [1] (under the misleading term piezoelectric) has the form

Ff =
∫

dτ fflexo =
∫

dτ eijkEk∇inj (3)

with eijk = e1δ
⊥
ij nk + e3δ

⊥
jk ni. It also applies to cholesterics in the local description.

We now come to the discussion of the observation of a flexoelectric effect in a sample

of cholesteric liquid crystals [13]. Applying a static electric field E perpendicular to the

helix axis the pure twist structure acquires some bend and splay contributions due to

flexoelectricity. The structure observed in [13] can be described by the director field

n̂ = (cosθ, sinθcosα,−sinθsinα), (4)

where θ = θ(x, y, z). Here α is the constant angle between the optical axis (i.e. the normal

to the planes, where n̂ lies) and the helix axis in the field-free state (chosen as the z-axis).

Without the electric field the helical phase θ = q0z + const., while α = 0.

In the following we will show that the angle α is not fixed by bulk elastic forces

and the electric field, but given by boundary conditions. Choosing the field in x-direction

without loss of generality we obtain for the flexoelectric free energy density

fflexo = −1
2
Ex{(cosα

∂

∂y
−sinα

∂

∂z
)([e1+e3]θ+

1
2
[e1−e3]sin2θ)+

1
2
[e1−e3]

∂

∂x
cos2θ} (5)

From eq.(5) we read off immediately that the flexoelectric energy is a surface term, as long

as the electric field is spatially homogeneous and α = const., i.e. the total flexoelectric

energy can be transformed into a surface integral and when minimizing the complete free

energy the flexoelectric part does not contribute to the Euler equation. Disregarding for

the moment (as in ref.[13]) e1 − e3 and εa, the anisotropy of the dielectric tensor, and

putting K1 = K3 = K, the problem is effectively two-dimensional (θ = θ(y, z)). Then

minimization with respect to θ and α of the total free energy, Eqs. (2) and (3), reveals

that the angle α is not fixed by this procedure. What is fixed is the relative angle between

the orientation of the helix and the orientation of the optical axis,

tan(φ− α) =
(e1 + e3)Ex

2 q0K
, (6)
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where tanφ ≡ ∂θ
∂y/∂θ

∂z and φ is the angle between the helix axes in the field-free and the

field-dependent cases (in the latter case the helix is still defined by layers of constant phase

θ).

In physical terms this means that depending on boundary conditions and geometry

one can find experimentally a rotation of the optical axis (with respect to the laboratory

frame set by the external field and the helix axis in the field-free case) or not. The former

case was reported for the experiment in ref.[13]. In a different geometry (probably in a small

aspect ratio cell) and under different boundary conditions one might well find, however, a

smaller rotation (or none at all) of the optical axis accompanied by an appropriate rotation

of the helical axis (as to keep the value of φ − α). This possibility of rotating the helical

axis exists, because in the absence of boundary effects the direction, in which translational

symmetry is spontaneously broken in cholesterics, is not fixed – a feature that apparently

is not destroyed by flexoelectricity, if the external, constant electric field is orthogonal to

the undisturbed helix. This physical picture is essentially unchanged, if εa, e1 − e3 and

K1 6= K3 are taken into account.

Now we turn to a discussion of some dynamic aspects. Already more than 25 years

ago Helfrich [24] pointed out that the flow behavior in cholesteric liquid crystals is rather

different from that of nematics leading to phenomena like plug flow due to permeation

effects. As we will discuss in the following these qualitative differences between cholesteric

and nematic liquid crystals also apply to the dissipative coupling terms between director

deformations and the effects of electric fields. In nematics one has a dissipative analogue of

the flexoelectric term [12], which in the dissipation function gives rise to the contribution

Rf (E) = −ζE
ijkhi∇jEk (7)

where the material tensor ζE
ijk is of the form ζE

ijk = ζE(δ⊥ijnk +δ⊥iknj) containing one trans-

port parameter, provided the quasi-static condition curl E = 0 is implemented. Clearly

this effect also arises in cholesteric liquid crystals when the local description is used. How-
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ever, in cholesteric liquid crystals there is an additional dissipative process, namely the

electric analogue of the Lehmann effect [11,16,17]

RL(E) = ψEq0E · (n× h). (8)

This contribution to the dissipation function contains one gradient less than that of Eq.(7)

and cannot exist in nematics due to parity. As we have pointed out in ref.[17] there is no

static contribution to the electric analogue of the Lehmann effect, in contrast to the case of

temperature and concentration gradients, where both, static and dynamic Lehmann-type

effects exist. Thus the experiments of ref.[16] were directly focusing on ψE.

¿From the fact that for cholesteric liquid crystals there are two dynamic dissipative

cross-coupling terms between director variations and electric fields, it follows that it will be

rather difficult to evaluate from measurements the static flexoelectric coefficients alone. In

ref.[13], e.g., the dissipative electric Lehmann effect (8) drives the system into a stationary

state, which is not identical to the (constraint) equilibrium state (6). The latter was

obtained by (δ/δα)(Fn +Ff ) = 0, while the stationary state is given by (δ/δα)(Fn +Ff ) =

γ1ψEq0Ex, which does not allow to obtain e1 + e3 from measured values of φ− α without

knowing ψE.

We note that even for nematics the evaluation of the static flexoelectric terms from

dynamic experiments did not take into account the contributions ∝ ζE [4-10], although

typically a combination of the two types of flexoelectric terms enters the dynamics of the

director, a feature that will be discussed in detail elsewhere [25].

Interpreting such experiments is even more complicated in (globally) polar cholester-

ics, which e.g. show a longitudinal piezoelectric effect along the helix axis which was pos-

sibly observed in refs. [26,27], because they must have some additional local structures

(compared to ordinary cholesterics considered above) as has been discussed in [28]. We

would also like to point out that the analysis given above can easily be generalized to

cholesterics II [29], which can arise when biaxial nematic phases are chiralized [30]. It will
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also play role for defect phases [31], which can emerge when for chiralized biaxial nematic

phases the three directors of the system develop a tendency to twist around different axes.

Such phases have probably been observed in lyotropic systems [32]. We close by mention-

ing the famous cholesteric blue phase, for which similar considerations can be made when

the local approach to cholesterics is used. Those are also defect lattices as pointed out first

by A. Saupe in one of his classical papers [33].

It is a pleasure to dedicate this note to Alfred Saupe with whom we had many interesting

and stimulating discussions on the physics of liquid crystals in general and of cholesteric

liquid crystals in particular.
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