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18.1 INTRODUCTION AND HISTORICAL OVERVIEW

While liquid crystalline elastomers combining the properties of liquid crystals and of elas-
tomers, have been synthesized first in Finkelmann’s group over 25 years ago [1] (compare
Ref. [2] for a recent review of some macroscopic properties), the field of magnetic gels is
much more recent. About a decade ago, Zrinyi’s group reported the preparation of isotropic
magnetic gels combining the properties of a gel with those of a magnetic liquid [3,4].

Since the late 90’s, isotropic magnetic gels, which only react to magnetic field gradients,
but not to homogeneous magnetic fields, have been investigated in detail synthetically, exper-
imentally and theoretically [5-25], where a large body of work has been accumulated in par-
ticular by Zrinyi’s group. In particular Ref. [5] gives a concise and clear overview of the early
work on isotropic magnetic gels. Apart from combining ferrofluids and polymer networks,
other groups have generated magnetic gels by embedding ferrite particles or v — FeaOs3
particles of nanometer scale into a gel matrix [26-30]. When magneto-rheological fluids are
combined with a polymer network, magneto-rheological gels result [31-37].

In 2003 the groups of Martinoty [38] and Zrinyi [39] pioneered the synthesis and charac-
terization of uniaxial magnetic gels by generating the magnetic gel in an external magnetic
field thus freezing-in the direction of the external magnetization. In contrast to isotropic mag-
netic gels, which respond only to field gradients, uniaxial magnetic gels can be oriented in a
homogeneous magnetic field [38]. While the static properties of iron and magnetite particles
containing magnetic gels have been elucidated in Zrinyi’s group [39—-44], Martinoty’s group
has focused on the investigation of the dynamic properties, in particular using piezorheome-
try. Very recently, Martinoty’s group [45] has also studied the magnetic-field induced gener-
ation of a novel uniaxial magneto-rheological system - using a magneto-rheological fluid -,
which is solid-like in the field direction and liquid-like transverse to the direction of the exter-
nal field. Correspondingly, the review and the analysis of the physical properties of uniaxial
magnetic gels comprises the major part of this chapter.

We note that very recently also the synthesis and characterization of thermoreversible
ferrogels has been reported [46]. In these systems the sol - gel transition can be observed as
a function of temperature. It will be clearly very interesting to study the rheological behavior
and the instabilities (e.g., the Rosensweig instability) in these systems using the temperature
as a continuously variable parameter.

In the next Section we present a detailed analysis of the available experimental investiga-
tions of uniaxial magnetic gels followed by a Section describing the macroscopic properties
and novel cross-coupling effects for both, isotropic and uniaxial magnetic gels [18,47-49].
In this Section we make use of the approach of hydrodynamics and macroscopic dynamics,
which is valid in the low frequency, long wavelength limit (cf. [50] for a detailed exposition
of the methods). In the last Section we discuss similarities and differences in the physical, in
particular in the macroscopic properties between magnetic gels on the one hand and liquid
crystalline gels and elastomers on the other.
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18.2 EXPERIMENTAL ASPECTS

18.2.1 INTRODUCTION

Magnetic gels or elastomers are composite materials made up of magnetic particles embed-
ded in a polymeric matrix. Like liquid crystalline elastomers, they belong to the category of
systems known as ‘intelligent’. They are called uniaxial when the magnetic particles are ori-
ented in a permanent way in a given direction. The interest of the latter systems is that they
respond not only to gradients of the magnetic field, like superparamagnetic gels, but also to
uniform magnetic fields.

In this Section, we concentrate on the main experimental results obtained for uniaxial
magnetic gels and elastomers. We address three fundamental problems raised by these mate-
rials: the mechanical anisotropy, the influence of an external magnetic field on the mechanical
anisotropy and the formation kinetics governing the properties of the final material. These
topics will be discussed in the light of the experiments performed by the groups of Zrinyi
and Martinoty. The static aspects, mainly studied by Zrinyi’s group, and the dynamic aspects
studied by Martinoty’s group will be presented separately.

18.2.2 STATIC ASPECTS

In the experiments performed by Zrinyi’s group [40-42], two different types of systems were
investigated:

a) Magnetic elastomers composed of poly(dimethyl siloxane) (PDMS) networks filled
either with carbonyl iron particles, or with Fe3Oy4 particles (magnetite particles). As shown
in Figure 18.1, the carbonyl iron particles are polydisperse and have spherical shape with
smooth surface, in contrast to the magnetite particles. The concentration of the filler particles
in the elastomer varied from 10 to 40 wt%.

b) Magnetic gels composed of poly(vinyl alcohol) (PVA) hydrogels filled with magnetite
particles whose concentration in the gel was 1.2 wt%.

The uniaxial samples were prepared by applying a uniform magnetic field during the for-
mation process. To do that, the mixture containing the polymeric matrix and the magnetic
particles was introduced into a cube-shape mould placed between the poles of an electro-
magnet. The formation of the uniaxial gel or elastomer proceeds in two steps. First, the em-
bedded magnetic particles are aligned along a common direction, leading to fiber formation.
The aligned particles are then locked by the chemical cross-linking, giving rise to a highly
anisotropic material. For detail about the preparation of the sample see [40—42].

An example of the texture of the final material is given by observations using an optical
microscope performed on a uniaxial magnetic PVA hydrogel prepared by Martinoty’s group
(see Section 18.2.3.4.2 dealing with dynamic aspects; Figure 18.10).

18.2.2.1 Shear mechanical anisotropy

In [40-42], the static shear modulus G was determined by applying a unidirectional compres-
sion force on the sample and by measuring the resulting stress-strain relationship. G is then
deduced from the neo-Hookean law of rubber elasticity [51], which is given by:
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Figure 18.1: SEM pictures of the iron (a) and magnetite particles (b). The bar corresponds to
400 nm. (Reprinted from Varga, Z., Filipcsei, G., and Zrinyi, M., Polymer, 46, 7779, 2005.
Copyright 2005, with permission from Elsevier).

on =G\ =272 (18.1)

oy, is the nominal stress defined as the ratio f/S where f is the tensile force and S the
cross-Sectional area of the sample measured in the undeformed state. A is the compression
ratio [/lo where [ corresponds to the length of the sample measured in the direction of the
force, and [ is the initial length associated with the undeformed state.

All the measurements were made at room temperature on samples containing a high con-
centration of magnetic particles varying from 10% to 40% in weight. The results obtained for
auniaxial PDMS sample filled with 40 wt % magnetite particles and for its isotropic analogue
are shown in Figure 18.2. For each of the three distributions of the magnetic particles with re-
spect to the applied force, the data clearly show that the stress-strain behavior obeys Equation
18.1. The significant differences in the slopes of the stress-strain curves demonstrate that G is
very sensitive to the spatial distribution of the magnetite particles. In particular, the uniaxial
sample exhibits highly anisotropic properties with a ~ 70% anisotropy in G. Similar types of
behavior are observed for the other concentrations.

The situation is not the same when the PDMS elastomer is filled with iron particles. Two
cases must be considered, according to whether the direction of the applied compression force
is parallel or perpendicular to the fiber structure. For the perpendicular case, the stress-strain
behavior roughly obeys the ideal behavior given by Equation 18.1. This is no longer the case
when the direction of the compression force is parallel to the fiber structure, and a strong
deviation from the ideal behavior is observed, as shown in Figure 18.3. This striking change
in behavior for the parallel geometry between the iron-filled samples and the magnetite-filled
samples indicates that the interaction of the particles with the polymeric matrix is different.
As we will see below, the data obtained at large deformations lead to the same conclusion.

Since the elastic modulus is related to the degree of swelling, the anisotropy in the me-
chanical behavior can also be observed in swelling experiments. The data of Fig 18.4, taken
for a PDMS elastomer filled with 40 wt% magnetite particles, show that the swelling is
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Figure 18.2: Stress-strain behavior of PDMS elastomers filled with 40 wt % magnetite par-
ticles for three different spatial distributions of the particles. The white arrows indicate the
direction of the applied compression force. (Varga, Z. et al. Macromol. Symp., 227, 123, 2005.
CopyrightWiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)
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Figure 18.3: Stress-strain behavior of a uniaxial magnetic PDMS elastomer filled with iron
particles. The compression force is parallel to the direction of the fibers. The symbols indicate
the concentrations of particles. A 400 mT uniform magnetic field was applied during the
formation of the sample. D = \ — A2, (Reprinted fromVarga, Z., Filipcsei, G., and Zrinyi,
M., Polymer, 46, 7779, 2005. Copyright 2005, with permission from Elsevier.)

533



3.6 4

d [cm]

3.2 4

2.8 4

2.4 4

2.04

M I T N T v 1
0 300 600 900 1200
t [min]

Figure 18.4: Anisotropic swelling of a uniaxial magnetic PDMS gel filled with 40 wt% mag-
netite particles in n-hexane. (Reprinted from Varga, Z., Filipcsei, G., and Zrinyi, M., Polymer,
46, 7779, 2005. Copyright 2005, with permission from Elsevier.)

anisotropic, indicating again the anisotropic nature of the material.

All the previous experiments concern the behavior at small deformations. New effects
appear at large deformations, as we will see now. Figure 18.5 shows the stress-strain curves
taken for the uniaxial PVA gel loaded with magnetite particles, and for its isotropic analogue.
In all cases, it can be seen that the data taken at large deformations deviate from the linear
behavior observed at small deformations. Particularly interesting is the situation where the
applied force is parallel to the fibers. In that case a bending occurs below a critical strain.
This effect, which reflects a stress induced softening, has been interpreted as a mechanical
instability associated with the buckling of the fibers [41]. Similar types of behavior were
observed for the PDMS elastomer loaded with magnetite particles.

Figure 18.6 shows the data obtained on the iron-filled PDMS elastomer. As it can be seen,
the shape of the stress-strain curves is different from those observed in the systems filled with
magnetite particles (PVA gel or PDMS elastomer). In the case where the applied force is
parallel to the fibers, the compression of the sample induces a break point in the stress-strain
curve instead of a softening. According to [41], this break point reflects the destruction of the
fiber structure of the iron particles.

The difference in behavior between the magnetite-loaded and the iron-loaded systems
can be explained by the fact that the iron particles do not interact strongly with the polymer
network, contrary to the magnetite particles. As a result, the polymer network cannot prevent
the break-up of the iron fiber structure under compression, while it prevents the destruction
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Figure 18.5: Stress-strain curves of magnetite-loaded PVA gels for three different spatial
distributions of the particles but with the same concentration of magnetite particles. The white
arrows indicate the direction of the applied compression force. A 400 mT uniform magnetic
field was applied during the formation of the sample. (Reprinted from Varga, Z., Filipcsei, G.,
and Zrinyi, M., Polymer, 46, 7779, 2005. Copyright 2005, with permission from Elsevier.)
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Figure 18.6: Same as in Figure 18.5, but for iron-loaded PDMS elastomers. (Reprinted from
Varga, Z., Filipcsei, G., and Zrinyi, M., Polymer, 46, 7779, 2005. Copyright 2005, with per-
mission from Elsevier.)
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of the magnetite fibers. As already stressed above, the nature of the magnetic particles (mag-
netite versus iron), and probably their size (larger for the iron particles than for the magnetite
particles), their shape and geometric features (spherical shape with smooth surface for the
iron particles, irregular angular shape with sharp facets for magnetite particles) play a major
role in the mechanical behavior of both systems.

18.2.2.2 Influence of an external magnetic field on the behavior of the
shear modulus G

Since the shape of the uniaxial elastomers is coupled to the magnetic field through the mag-
netic particles, it is interesting to investigate the influence of a uniform external field, H, on
the behavior of G. This has been done in [42] on uniaxial (PDMS) elastomers filled with car-
bonyl iron particles. The experiments were performed as a function of particle concentration,
intensity of the magnetic field and of the spatial distribution of the particles. By varying the
direction of the magnetic field with respect to the direction of the fibers and to the direction
of the compression stress, five different geometries were studied. In all cases an increase of G
was found with increasing H. However, this magnetic reinforcement effect is only significant
when the applied field is parallel to the fibers. This is not too surprising since in this case the
magnetic field reinforces the rigidity of the fibers. Typical results are shown in Figure 18.7
for the two geometries where the field is applied in a direction parallel to the fibers. It can be
seen that the largest increase in GG is observed when the magnetic field is parallel to both the
particle alignment and the applied force.

It was found that the magnetically induced excess modulus, G%,, is proportional to H?
at weak fields. To take into account this limiting behavior and the fact that GE, approaches a
saturation value at high fields, the G%; data have been analyzed with the following equation

H2

E —
GM(H) — GM’OOaB +H2

(18.2)
where ap is a material parameter and G/ oo the value at high field. This equation provides a
good fit to the experimental data, as shown by Figure 18.8.

As will be shown in the next Section this magnetic field induced enhancement is not due
to static magnetostriction effects, but rather associated with the magnetic field dependence of
the elastic moduli.

18.2.3 DYNAMIC ASPECTS
18.2.3.1 Introduction

Contrary to the static aspects, the dynamic aspects of uniaxial magnetic gels have practically
never been studied, essentially because conventional rheometers do not allow taking mea-
surements in the presence of a magnetic field. The piezorheometer developed in Martinoty’s
group over the last few years makes it possible to perform these measurements. In this tech-
nique, the gels are formed directly in the measuring cell which, due to its reduced dimensions,
can be placed in the air-gap of an electromagnet. This makes it possible to follow the kinetics
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Figure 18.7: Influence of a uniform magnetic field intensity on the elastic modulus of a uni-
axial iron-loaded PDMS elastomer. The white and black arrows indicate the direction of the
applied force and of the external magnetic field, respectively. Left: The force is applied per-
pendicularly to the magnetic field. Right: The applied force and the applied magnetic field
are parallel. The symbols indicate the concentration of iron particles. (Reprinted from Varga,
Z., Filipcsei, G., and Zrinyi, M., Polymer, 46, 7779, 2005. Copyright 2005, with permission
from Elsevier.)
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Figure 18.8: The magnetically induced excess in the modulus as a function of the applied field
for several uniaxial iron-loaded PDMS elastomers. The solid lines are fits to Equation 18.2.

The symbols indicate the concentration in iron particles. (Reprinted from Varga, Z., Filipcsei,
G., and Zrinyi, M., Polymer, 46, 7779, 2005. Copyright 2005, with permission from Elsevier.)
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of formation of the gel and to determine its frequency-response in a wide frequency range.
Both pieces of information are essential to optimize uniaxial magnetic gels for possible ap-
plications. Before discussing the experimental results, we first recall the expectations for the
sol-gel transition, and the essential features of the piezorheometer.

18.2.3.2  The sol-gel transition

Since the sol-gel transition is a connectivity transition, rheological experiments are one of the
most power tools to determine the behavior of a gelling system. Here we briefly recall the
changes in behavior of the complex shear modulus G = G’ + ¢G”, which occur when the
system evolves from the sol phase to the gel phase.

At the beginning of the chemical reaction, in the sol phase, the low frequency response of
the system is liquid-like with

G =T (18.3)
G" =wn (18.4)

where w is the angular frequency, 7 the viscosity, and 7 a relaxation time. Equations 18.3-18.4
are valid for wr < 1 (hydrodynamic regime). During the gelation process, the number and
size of the polymer clusters increase leading to an increase in 1 and 7. At the gel point, a first
cluster extends across the entire sample. The steady-shear viscosity diverges to infinity, and
the equilibrium modulus starts to rise to a finite value. Beyond the gel point the low frequency
response of the system is solid-type with

G =Gp (18.5)
G’ —uwp (18.6)

where G'p is a constant plateau value. In the gel phase, the network structure coexists with
the remaining clusters which do not yet extend across the sample. The size distribution of
these clusters can be deduced from the high frequency behavior of G’ and G”, which is given
by the following power-law

G ~G ~uw" (18.7)

The low frequency elastic response (i.e. G p) of the gel continues to increase steadily until
the chemical reaction is completed.

18.2.3.3 The piezorheometer

The measurements of the complex shear modulus G = G’ + iG" as a function of frequency
were taken with the piezo-rheometer used for studying different aspects of the shear mechan-
ical properties of elastomers [52-59], polymers [60-62] and polyelectrolyte films [63]. As
schematically shown in Figure 18.9, the piezorheometer is a plate-plate rheometer that uses
piezoelectric ceramics vibrating in the shear mode to apply a small strain ¢ to the sample and
to measure the amplitude and the phase ( of the shear stress ¢ transmitted through the sam-
ple. The complex shear modulus of the sample is given by the stress-strain ratio G = o/e. It
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Figure 18.9: Schematic representation of the shear piezorheometer.

can be determined for sample thicknesses ranging from 10 pum to 100 pum (for viscous lig-
uids), over a wide frequency range (10~2 - 10* Hz) and by applying very weak strains (1075 -
10~2). The sample has an elastic response when the strain and the stress are in-phase (¢ = 0),
and a viscous response when the strain and the stress have a phase difference ¢ of 90°. For a
viscoelastic sample, the phase difference ¢ is in between 0° and 90°. In practice, the sample
is placed between two silica slides, respectively stuck to the emitting and to the receiving
ceramics. The reliability of the set-up was verified with liquids and soft solids (elastomers
and gels), whose rheological properties are well known.

In the experiments presented here, G was determined for frequencies ranging from 0.2
Hz to 10% Hz. The applied strain £ was very small, ~ 10~%, and the validity of the linear
response was checked experimentally. Because of its small size, the cell was placed between
the poles of an electromagnet during the growth of the gel and, once the gel was formed, under
the objective of an optical microscope to check the organization of the magnetic particles.
The experiments were performed with a homogeneous magnetic field (up to ~ 1 T) applied
within the plane of the sample, in a direction parallel or perpendicular to the shear direction.
Additional measurements were also taken without the magnetic field. All the experiments
were performed at room temperature. The samples were films with ~ 35um thickness and
~ 2.5cm? surface area. A PC monitoring the measuring system allowed the measurements
to be carried out automatically.
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Figure 18.10: Observation under the optical microscope of the texture of a ferrogel film
formed in the presence (a, b) or in the absence (c) of a magnetic field. The magnetic field
is applied in a direction parallel (a) or perpendicular (b) to the plane of the sample. Size of
the pictures: 170um x 130um. (Collin, D. et al. Macromol. Rapid Commun., 24, 737, 2003.
CopyrightWiley-VCHVerlag GmbH&Co. KGaA. Reproduced with permission.)

18.2.3.4 Results

The system studied was a magnetic PVA hydrogel filled with ferrofluid particles [38].

18.2.3.4.1 Preparation and magnetic properties of the gel

These gels were prepared by introducing a magnetic fluid (M-300 iron oxide suspen-
sion from Sigma-Hi-Chemical, Japan) into a 7.5 wt.% aqueous solution of poly (vinyl alco-
hol) (degree of hydrolyzation of 98-99%, M,, = 31000-50000 g/mol, from Aldrich Chemical
Company). The crosslinking reaction was performed with glutardialdehyde (50 wt.% aqueous
solution from Aldrich) at a pH of 1.5 (through addition of HCI 37% from Riedel-de Haén).
The formation process of the magnetic gel (hereafter called ferrogel) is related to the compe-
tition between two antagonistic mechanisms associated with the fact that the ferrofluid has a
pH of ~ &, and that the cross linker does not react above pH ~ 2. Consequently, the lowering
of the pH, which is necessary for the reticulation of the gel, induces a destabilization of the
ferrofluid, leading to the formation of clusters of magnetic particles. This effect is compen-
sated by the reticulation effect, which blocks the size of the clusters and their orientation in
the direction of the magnetic field. As a result, the gel presents oriented fibers (length: several
tens of microns, diameter: a few microns) perfectly visible with the optical microscope, as
shows in Figure 18.10. For detail about the preparation of the sample see [38].

540



0.15 I | I
0.12— f‘ e® * . ]
S0 e
© : ~ .f"
O e
(an) 0.06- ; E 0.02 '_-'. =
: = < _
. oo1— '
003 0.00 T T -
C H(mT)
0,00 [ T T T T T T T T T
0 200 400 600 800 1000

H(mT)

Figure 18.11: The rotation angle of a gel cylinder as a function of the magnetic field strength.
The inset shows that the rotation angle is proportional to the field for small fields. (Collin, D.
et al. Macromol. Rapid Commun., 24, 737, 2003. CopyrightWiley-VCH Verlag GmbH&Co.

KGaA. Reproduced with permission.)

To gain insight into the magnetic nature of the gel, the orientation of a cylindrical gel
(the analogue of the planar sample studied in the piezorheometer) was studied as a function
of the field amplitude. To do that, the gel was suspended in a homogenous magnetic field
using a nonmagnetic wire of known torsional modulus. The rotation angle of the sample was
then measured as a function of the field amplitude. The rotation angle is expected to be linear
(ferromagnetic-like) or quadratic (paramagnetic-like) in the applied field strength. The data
in Figure 18.11 show that the gel presents a ferromagnetic type response for weak fields, and
that a paramagnetic contribution becomes dominant at larger fields, leading to substantial de-
viations from a linear law. This ferrogel is uniaxial because it can be oriented in a uniform
magnetic field. Its axis of magnetization is defined by the direction of the magnetic field im-

posed during the reticulation.

18.2.3.4.2 Dynamical shear properties of the gel

We start with the mechanical properties of the pure PVA gel. Its formation is illustrated
by Figure 18.12a, which shows the variation of G’ as a function of time. The plotted values
of G’ correspond to the hydrodynamic behavior characterized by the frequency-independent
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Figure 18.12: Left: variation of G’ as a function of time, for a pure PVA gel. Right: frequency-

dependence of G’ for the same gel.

behavior of G’ shown on Figure 18.12b. The solid line on Figure 18.12a shows that the fit with
a stretched exponential gives a good representation of the data. The stretched exponential is

given by
(18.8)

G’ t—t
=1—exp(—[ N
& (=)
It contains four fit parameters. The value G of G’ for long times, the time ¢( associated
with the infinite cluster, the formation time 7 of the network and the exponent = describing
how stretched is the exponential. The resulting parameters are G’ = (1.091 £ 0.001) x 10*

Pa, to = 0.050 £ 0.006 h, z = 1.00 = 0.01 and 7 = 0.585 £ 0.007 h.
A typical example showing the formation of a uniaxial ferrogel in a homogeneous field

is given by Figure 18.13. The data correspond to the case where H is parallel to v. The field
strength was 200 mT. The comparison with the time-axis of Figure 18.12a immediately shows
that the presence of magnetic particles slows down considerably the kinetics of formation of

the gel.
As for the pure PVA gel, Equation 18.8 provides a good fit (solid line) to the experimental

data with the following parameters, G/, = (1.261 + 0.002) x 10* Pa, ¢y = 1.12 4 0.08 h,
xz = 1.01 £ 0.01 and 7 = 16.87 £ 0.10 h. The inset of Figure 18.13 shows that G’ is

frequency independent at low frequencies, indicating that the data are in the hydrodynamic
regime. Similar results were obtained for H perpendicular to v. However, it was not possible
to determine whether the mechanical response of the gel is anisotropic or not, because the
final value of G’ is very sensitive to slight differences in the concentration of the ingredients

(glutardialdehyde and HCI) which are involved in the preparation of the gel. In any case, the
anisotropy, if it exists, is very small. This indicates that the fibers seen in Figure 18.10 are not

compact objects, but rather loosely packed objects.
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Figure 18.14: Master curves for the pure PVA
gel and the uniaxial magnetic PVA gel, a)
in the parallel geometry, b) for the uniax-
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perpendicular geometries. (Collin, D. et al.
Macromol. Rapid Commun., 24, 737, 2003.
CopyrightWiley-VCHVerlag ~ GmbH&Co.
KGaA. Reproduced with permission.)

CopyrightWiley-VCHVerlag ~ GmbH&Co.
KGaA. Reproduced with permission.)

As shown in Figure 18.14a, a quantitative comparison between the data obtained for the
pure PVA gel and for the ferrogel can be done by plotting the data for both gels as a function
of the reduced variables G’ /G._ and (t — tp)/7. It can be seen that both curves perfectly
superimpose, giving rise to a master curve, although the 7 values differ by more than one
order of magnitude.

Figure 18.14b shows a similar plot for the ferrogel data associated with the parallel and
perpendicular geometries. Again all the data fall on the same master curve. For all the sam-
ples, the exponent x remains around 1, indicating that these gels are characterized by a single
time scale. The gel formation phenomenon is thus controlled by the same physics, regardless
of whether the system is filled with magnetic particles or not.

Similar experiments are in progress on different systems for which the final material
should show (or shows) a mechanical anisotropy. Also, experiments performed in the sol
phase, similar to those reported in [45], should be interesting to give information about the
precise nature of the interaction between the magnetic particles and the polymer network.
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18.3 MACROSCOPIC STATIC AND DYNAMIC PROPERTIES

18.3.1 STATICS AND THERMODYNAMICS
18.3.1.1 Isotropic ferrogels

The macroscopic description of a system starts with the identification of the relevant vari-
ables. Apart from the quantities that are related to local conservation laws, such as mass
density p, momentum density g, energy density €, and concentration c of the swelling fluid,
we consider the elastic strain u;; and the magnetization M as additional variables. In a crystal
the former is related to the broken translational symmetry due the long range positional order,
which gives rise to the displacement vector @ as a hydrodynamic symmetry variable. Since
neither solid body translations nor rigid rotations give rise to elastic deformations, the strain
tensor is used as a variable, which reads in linearized version u;; = % (Viu; + V;u;). In
amorphous solids, such as rubbers, gels, etc., linear elasticity is still described by a second-
rank, symmetric strain tensor. For a proper description of nonlinear elasticity cf. [64]. The
induced magnetization M is a slowly relaxing variable in the superparamagnetic (isotropic)
case.

Assuming local thermodynamic equilibrium, i.e. all microscopic, fast relaxing quantities
are already in equilibrium, we have the Gibbs relation

relating all macroscopically relevant variables discussed above to the entropy density o. B
is the magnetic induction field included here in order to accommodate the static Maxwell
equations. In Equation 18.9 the thermodynamic quantities, chemical potential p, temperature
T, relative chemical potential ji., velocity v;, elastic stress W,;, magnetic field H;, and the
magnetic molecular field h}, are defined as partial derivatives of the energy density with
respect to the appropriate variables [50].

To determine the thermodynamic conjugate variables we need an expression for the local
energy density. This energy density must be invariant under time reversal as well as under
parity and it must be invariant under rigid rotations, rigid translations, and be covariant under
Galilei transformations. In addition to that this energy density must have a minimum, because
there exists an equilibrium state for the gel. Therefore the expression for the energy density
needs to be convex. Taking into account these symmetry arguments we get [18]

B2 ” i
e = g+ - B-M + uékluijum - vékl M; Mjug + %MiQ + g (ME)Q
+uii (x?0p + x7d0 + x“dc) (18.10)

where € is the energy density of a fluid binary mixture. Equation 18.10 explicitly contains the
elastic and the magnetic energy, their cross coupling (the magnetoelastic energy) and bilinear
couplings of compression with the scalar variables. To discuss large elastic deformations
(rubber elasticity) one should keep terms of higher order of w;;, which are neglected here.

This Section is based on Refs. [18] and [47].
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The magnetostrictive coupling (~ ;) is cubic [65] and the M 4 contribution is kept in
order to guarantee the thermodynamic stability. The elastic tensor fi;1; (and similarly ;%)
takes the isotropic form fi;51 = (100, + o (5ik5jl + 040 1 — %(L-j(skl), where pi1 is the
compressibility and po the shear modulus. The magnetoelastic energy is similar to that for
ferromagnetic materials, where, however, the compressional magnetostriction is neglected
(v1 = 0) [65]. All static susceptibilities, such as the elastic and magnetoelastic moduli as well
as those describing cross couplings between compression and the density, entropy density,
and concentrations variations (x”, x“, and x¢, respectively) can depend on M 2 and are thus
magnetic field strength dependent.

Using Equations 18.9 and 18.10, the magnetic Maxwell field H; is defined in the usual
way

Oe
H; = <) = B; — M;, (18.11)
aBl M ,uij,...
while the magnetic molecular field A reads
Oe
M = = —B; — VijrMjug, + aM; + BM*M; (18.12)
aM’L B,uij,“.

Note that because of definition (Equation 18.11), it is not possible to have a direct coupling
between the external field B and the strain; the deformation of the network is mediated by
the magnetization via the coupling terms ~ ;.

The elastic stress ¥;; has the following form

Oe ii
U, = (a ) = pisunt — ZZELND MG + 655 (xP0p + X780 + x°6¢) (18.13)
Wij ) ar B, 2

and depends on the magnetization.

18.3.1.2 Uniaxial ferrogels

In uniaxial ferrogels there is a permanent magnetization, which defines a preferred direction
and constitutes a spontaneously broken rotational symmetry. We will introduce a unit vector
m; defined by m; = M, /|M]| pointing to the direction of magnetization in analogy to the di-
rector n; in nematic liquid crystals. But there is a significant difference. While both are even
under parity, the unit vector of magnetization m is odd under time reversal. This will permit
static as well as dynamic couplings to other variables that are odd under time reversal. We can
then define the transverse Kronecker tensor ;5 = d;; —m;m; and we have, together with the
Levi-Cevita symbol ¢; 1, three invariants of the system, by which all the static material tensors
(e.g. the elastic and the magnetostrictive tensor) and the transport tensors get their uniaxial
form [47]. Rotations of M are hydrodynamic excitations of the system and, therefore, the en-
ergy density should be a function of gradients of M, too. This involves replacing h dM; in
the Gibbs relation Equation 18.9 by h; dM; + @M d(V;M;) or using h}' = M -V, oM.
In addition, we consider a variable first introduced by de Gennes for liquid crystalline elas-
tomers [66] called relative rotation Qi. This variable belongs to the class of slowly relaxing
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variables and describes the relative rotation between the polymer network and the orientation
of the magnetization. It is defined linearly by Q; = om,; — QF = om;— %mj (Viu; — Vi u;).
Since m; is a unit vector, m - dm = 0. This variable is odd under time reversal and even un-
der parity. For a general, nonlinear definition cf. [67]. This degree of freedom requires the
additional contribution W; in in the Gibbs relation. It should be noted, however, that for
materials with an almost rigid coupling between the direction of M and the elastic network,
this degree of freedom is clamped and less important.

In the uniaxial case the local energy density, Equation 18.10, has to be amended by the
appropriate additional contributions [47]

; 1 | ~
guniar iKUkl(leJ)(kal) + iDlngz + Dy (mJ(SlJ,; + mk(SlJ]‘) Qiujk
+Cijkgivak: + Uzk(le])(vk(SO’) + O’fjk(le])(vk(Sp)
+07;6(ViM;)(Vidc) (18.14)

containing a Frank-like magnetization-rotational energy, the relative rotations’ energy and
their energetic coupling to elastic shear, various couplings between magnetization rotation
and density, temperature, and concentration gradients as well as the momentum density g;.
The latter coupling results in g; = pv; — pc;;1V; My, and is similar to one of the couplings
appearing in superfluid *He- A first introduced by Graham [68]. In this system one defines an
axial vector 1 parallel to the direction of the net orbital momentum of the helium pairs. This
vector does not commute with the total angular momentum vector and therefore this variable
breaks the continuous rotational symmetry spontaneously, similarly to the magnetization in
our system.

The uniaxial form of the static material tensors in Equations 18.10 and 18.14)as well as
the resulting expressions for the thermodynamic conjugate fields (like R}, W, U,; etc.) are
listed in [47] and not repeated here.

18.3.2 DYNAMICS

To determine the dynamics of the variables we take into account that the conserved quantities
obey a local conservation law while the dynamics of the other variables can be described by
a simple balance equation where the counter term to the temporal change of the quantity is
called a quasicurrent. As a set of dynamical equations we get [47]

Op+Vig:=0 (18.15)
0i0 + Vi(ov;) + Viji = % (18.16)
pOc + pv;Vic+ V5 =0 (18.17)
Orgi + V;(vigi + 0ijlp+ B -H] + 0} + 055) = 0 (18.18)
O M; +v; VM + (M x w); + X; =0 (18.19)
Oiuij + v Vi + Yy =0 (18.20)
O + e Vil + Z; =0 (18.21)
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where we have introduced the vorticity w; = (1/ 2)61] sV jv and the thermodynamic part
of the stress tensor atjh = —= (B H;+ B;H;) + (\I/]kekl + U;ex;) according to the re-
quirement that the energy densny should be 1nvar1ant under rigid rotations [50]. The pressure
p=0([edV)/OV in Equation 18.18 is givenby p = — + pup + To + v - g.

For practical reasons we have used an entropy balance equation 18.16 rather than the
energy conservation law; both are not independent but related through the Gibbs relation
(Equation 18.9). In the equation for the entropy density we introduced R, the dissipation
function which represents the entropy production of the system. Due to the second law of
thermodynamics R must satisfy R > 0. For reversible processes this dissipation function is
equal to zero while for irreversible processes it must be positive. In the following we will
split the currents and quasicurrents into reversible parts (denoted with a superscript R) and
irreversible parts (denoted with a superscript D).

If we again make use of the symmetry arguments mentioned above and use Onsager’s
relations we obtain the following expressions for the reversible currents up to linear order in
the thermodynamic forces [47]

§it = —RiV;T = DV pe + €5V (18.22)
jf = =DV + DERV,T + €7V 0 (18.23)
‘73 = —¥y - zykhk - L‘jklAkl +£z’jka (18.24)
Vi = =AW+ )\M [Vi(V x h™); + V;(V x h"),]
1
~5 Vg Vi + gﬁRva + &V ipe)
1
—§V (ERV U + RV T + 5 RV kbte) (18.25)
Xt = bf‘}“hf” + MM e ViV By — T Ay + 57 (18.26)
ZiR = Tij Jj fij hﬁw flm Ap — fkli Wi (18.27)

In isotropic ferrogels the quasicurrent Z7 is absent as well as the appropriate counter terms
~ Y et and £ F in X, oft, and Ylf, respectively. These terms describe the reversible
dynamlc coupling of relatlve rotatlons to the magnetization, the momentum density and the
network. The first coupling — mediated by the tensor fi); R _is a new term that exists neither
in nematic liquid crystalline elastomers [69] nor in superfluid 3He- A4, while the second cou-
pling, &7 I already appeared in superfluid *He-A and the third one, £}, in nematic liquid
crystalline elastomers.

All the second rank tensors have to be odd under time reversal and are of the form
af}? = aReijk my, resembling the form of a Hall conductance. In the isotropic case, m; has
to be replaced by the induced magnetization or by the external field. These reversible linear
field contributions to transport parameters or tensors are known even for isotropic fluids (x%,
Righi-Leduc effect) and some of them have been discussed in detail for ferronematics [70]
and isotropic ferrofluids [71]. the third and fourth rank material tensors are listed in [18,47].
Again, for isotropic ferrogels these reversible couplings are absent, if there is no external

magnetic field.

ijk
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We can use the dissipation function R as a Liapunov functional to derive the irreversible
currents and quasicurrents. One can expand the function R (R/T is the amount of entropy
produced within a unit volume per unit time) into the thermodynamic forces using the same
symmetry arguments as in the case of the energy density. We obtain [47]

1 1
R = Shig(ViT)(VST) + DE(VT) (Vi) + E5(VT)(Tabin) +

1 1
+§Dij(vz‘uc)(vg‘uc) + & (Vipe) (VieWin) + §fz‘j(vk‘1’ikz)(vl‘1’jl)

1 1
+E 1A Wi + ¢ Asj it + §bijhiM h' + STWiWi + EXwpM (18.28)

VijiiAij Al

where we have introduced various second rank dissipative transport tensors describing heat
conduction (), diffusion (D) and thermo-diffusion (D7) , elastic (or vacancy) diffusion ()
and appropriate cross couplings to temperature (£7) and concentration gradients (£°) , and
magnetization relaxation (b). These tensors are of the form a;;; = ayymym;+a J_(%, reducing
to aj; = «d;; in the isotropic case. The third rank tensor fj‘]k = £7 (M€ k1 + Mj€ir) My
vanishes in the isotropic case as well as 7 and £X due to the lack of relative rotations. Only
c;-]j & can exist in isotropic ferrogels, but is proportional to the square of the external magnetic
field strength. The viscosity tensor v;;1; has the standard isotropic or uniaxial form.

To obtain the dissipative parts of the currents and quasicurrents one has to take partial
derivatives with respect to the appropriate thermodynamic forces, e.g. Yi? = JR/0Y,;,

ZP = OR/OW;, or o) = —OR/9(V jv;). Again, explicit expressions are listed in [18,47].

18.4 EXAMPLES FOR NOVEL CROSS-COUPLING EFFECTS

18.4.1 MAGNETOSTRICTION
18.4.1.1  Static elongation and shear

For isotropic ferrogels we first discuss static elastic deformations in the presence of an ex-
ternal field. Magnetostriction leads to an anisotropic deformation. If then an external strain is
applied, the stress-strain relation is more complicated than a simple Hooke’s law.

In equilibrium, both the elastic stress Equation 18.13 and the magnetic molecular field
Equation18.12 have to be zero. Without an external field or external strain there is no magneti-
zation and no strain in equilibrium. A finite external field, taken along the z axis, B = Bye_,
induces an equilibrium magnetization (M 0 = Mye,) and a nonzero strain u?j due to the
magnetostriction effect. Neglecting the couplings of density, entropy, and concentration to
the strain tensor, we have [18]

0 0 H2Y1 — H17Y2 5 o
— =2 Py 18.29
e Huy 61 pin 0 ( )
0 H2v1 + 20172 4 9
n = — M, (18.30)
. 61 pho 0

This Section is based on Refs. [18], [47], [48], and [49].
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leading to the volume change U° = %, + ugy +u?, = (v1/2u1) M&. The magnetostrictive
volume change of the ferrogel is determined by the bulk modulus y; and by the coefficient
~1, which couples the trace of the stress tensor to the magnitude of the magnetization.

Magnetostriction is a well-known phenomenon in single- or polycrystalline ferromagnetic
solids [72]. Ferrogels are isotropic and nonmagnetic without an external magnetic field and
magnetostriction is then a nonlinear effect. The induced deformations, Equations 18.29 and
18.30, are of uniaxial symmetry and in this state the ferrogel behaves more like a uniaxial
ferromagnet than an isotropic one.

This state is then disturbed by an external deformation Aw;; by some mechanical device.
Due to the magnetostriction effect this gives also rise to a change in the magnetization. In
the static limit the magnetic degree of freedom is still in equilibrium and the change of the
magnetization can be obtained from the condition h¥ = 0, Equation 18.12. The applied
deformations give, directly by Hooke’s law, and indirectly by the change of the magnetization,
elastic stresses [18]

v, = (- Xofy"zMg)Auzz + (' — XO'y”y”Mg)(Aum + Auy,), (18.31)
Voo = (1" = X0V M§)Auga + (1 — x07* M§) Auyy

+(u' = x0v'" M) Aus., (18.32)
V.o = 2(p2 — X075 M)Ay, (18.33)
Uuy = 2u2Auy, (18.34)

with two additional relations similar to Equations 18.32,18.33, but with x and y subscripts
interchanged. For the magnetic susceptibility, xo = x(Bp), its value at the external field
strength By has to be taken while p”/ = uq + (4/3)pe and ¢/ = p1 — (2/3) o and simi-
lar abbreviations for the 7's are used. Note that, even if the deformation does conserve the
volume (Aug, + Auyy + Au,, = 0), the trace of the elastic stress tensor is not zero, but
given by Wy = —6x07172MZAu, . Formulas 18.31-18.34 are applicable for small strains
only, since it is based on Hooke’s law, while for larger strains deviations from this law due to
rubber elasticity are to be expected.

The effective elastic moduli, i.e. the ratio between the measured stress and the applied
strain, e.g. V., /Au,, or ¥, /Au,, show a decrease as a function of the applied field due
to magnetostriction. This is in contrast to the experiments shown in Figure 18.8, where an
increase is found. Thus, for the materials discussed in Figure 18.8 magnetostriction is a small
effect, completely dominated by the intrinsic field dependence of the material parameters,
u” (M) — ,u” ~ MZ. The latter effect is non-hydrodynamic and based on microscopic struc-
ture changes due to the external field. The proportionality factor can be obtained from exper-
iments and is positive for the materials discussed here.

18.4.1.2 Propagation of sound

Due to the presence of the permanent polymer network in ferrogels compared to ferrofluids,
there are transverse as well as longitudinal sound eigenmodes. In this Section we derive the
longitudinal and the transverse sound of the system with an external magnetic field parallel
to the z axis. We neglect all diffusional processes connected, e.g., with viscosity and heat
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conduction as well as their reversible counterparts. Only the relaxation of the magnetization
field is kept.

Assuming a one-dimensional plane wave with space-time dependence ~ expi(—wt +
k - r) for all deviations du,;, 6M;, v;, §p from the equilibrium values, the linearized set of
dynamic equations becomes an algebraic one. We consider sound in the two cases, where
the external magnetic field and the equilibrium magnetization are either perpendicular or
parallel to the wave vector. Field fluctuations ¢ B; are fixed by the static Maxwell equations
to 0B; = 5M](5743 — kikjkiz).

In the low frequency limit (w < 1/7)) below the magnetization relaxation frequency and
for the external field being perpendicular to the wave vector the velocities of the longitudinal
¢; and the transverse sounds c;1, ¢;o read [18]

(M _

@ = BMo) =iz e (18.35)
p 6p,u2,ul
M J—

2 - p2(Mo) — poy1 — pa7y2 M2, (18.36)
p 6pp1
My) 2 7

2 = p2(Mo) — 2pomi + Tpaye M2, (18.37)
p 12pp

while for a parallel field the transverse sound velocities are equal according to the effectively
uniaxial symmetry due to the external field.

The sound speeds at low frequencies and zero field give information about the compress-
ibility and the elastic moduli (bulk and shear). There is a dependence on M¢ due to intrinsic
field dependence of the moduli as measured by static experiments. However, even if the static
magnetostrictive effect is neglected (as done in Equations 18.35-18.37), there are additional
contributions ~ M¢g. They are of the bilinear yu type and a dynamic manifestation of mag-
netostriction emerging through the nonlinear elastic stress contribution to the stress tensor
in Uf]h, which, however, is effectively linear due to the non-zero equilibrium strains. There-
fore, the effective moduli measured by sound propagation in an external field are different
from those given by the static elastic stress W;; discussed in the preceding Section. The co-
incidence of static linear elasticity and low frequency sound speed is restored in the limit of
vanishing magnetic field, when no magnetostrictive deformation is present and the additional
contribution in the stress tensor afjh is nonlinear and absent in the sound spectra. Of course,
in this limit the sound spectra are isotropic as is the ferrogel.

The sound velocities change with an external magnetic field basically with the second
power of the field, which is in accordance with experiments on longitudinal sound [10].
Whether the sound velocities are decreased or increased by the field cannot be established
by general rules, since the signs of «y; » are not fixed and can be material dependent. Mea-
surements of transverse and longitudinal sound velocities in the different geometries will
provide information on the magnitude and sign of the magnetostrictive and elastic moduli.
As a first approximation the magnetostrictive volume change (~ 1 Mg /111) can be neglected
in those rubbers and only shape changes remain.

Damping of sound waves generally is rather weak and given by the imaginary part of
the dispersion relation. In addition to the usual magnetic-field-independent sound damping

550



due to viscosity and other diffusional processes there is a field-dependent sound damping in
ferrogels. This is an effect of the reversible, dynamic coupling of the magnetization to flow,
either phenomenological [cf:; (M) in Equation 18.26] or kinematic [e;;; M ;wy, in Equation
18.19] and its counterparts in the Navier-Stokes equation. For example, when the magnetic
field is parallel (perpendicular) to the wave vector a field-dependent damping of longitudinal
(transverse) sound reads, respectively, [18]

1 1" (2eR 4 oR 2

Im(w) = _5[’(‘” (pzl )] M2k, (18.38)
1 —eft 1)’

Im(we) = _5(’(072 pcbl 3) M2k2, (18.39)

the first of which can be related to the observed increase of the apparent viscosity due to
the magnetic field [73]. In all cases Jm < 0, as it should be according to the second law of
thermodynamics.

We will not investigate the high frequency limit for w > 1/7,7, since for higher frequen-
cies possible viscoelastic effects should also be taken into account, which goes beyond the
scope of this review.

18.4.2 SHEAR INDUCED MAGNETIZATION

Uniaxial ferrogels differ qualitatively from the isotropic ones by the macroscopic variables
associated with relative rotations. These variables describe, as already mentioned, the rela-
tive rotations between the orientation of the magnetization and the polymer network. In this
Section we discuss an effect associated with these variables. We apply a constant shear flow
and determine the change of magnetization. We assume that the direction of the permanent
magnetization of the uniaxial ferrogel m = e, is parallel to the flow direction of an external
stationary shear flow Sy = S**4y,,8;, Vi v;. Furthermore we assume spatial homogeneity
and consider only linear effects. Contributions due to magnetostriction effects are neglected.
We do not apply an external magnetic field. Therefore we can assume that the magnitude of
the magnetization is not changed but only its direction M = My (m + dm).

The resulting set of inhomogeneous algebraic equations for the four variables dm,,, dm.,
Ugy, and ;. has the following solutions [47]

S — bR(f‘X + 2§YRCJ) _ bJ_(fXR _ 2§YRC{%J
v 26V E(aMy — By) (0% + bR2)

) gewt (18.40)

_bJ_(fX + 2§YRCJ) + bR(f‘XR _ 2§YRC{%J
26V R(aMy — Bo) (b7 + bR2)

For this experimental setup we thus predict a rotation of the magnetization within the shear
plane, dm, # 0, as well as out of the shear plane, m. # 0, which are both proportional
to the applied external force. This effect is due to the variables associated with relative rota-
tions, because all contributions are proportional to either & XE ¢ X or ¢ YR which represent
the (reversible) dynamical coupling of relative rotations to the magnetization and the strain

dm, = )Sm (18.41)
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field, respectively. Reversible (superscript R) and irreversible transport parameters are sys-
tematically paired in the numerator. There are elastic deformations as well, not only in the
shear plane, but also out of the shear plane, u,,,, which are constant and proportional to S,
For oscillatory shear S¢** — S°®exp(iwt) the same variables as in the static case will be
excited with the same frequency, but will show some phase lag due to various dissipation
effects. The change of the direction of the magnetization obtained should be observable by
Hall probes, if the degree of freedom of relative rotations is operable and not clamped in the
ferrogel used.

18.4.3 SURFACE WAVES AND ROSENSWEIG INSTABILITY
18.4.3.1 Surface waves in isotropic ferrogels

Surface undulations of the free surface of viscous liquids are known to be able to propagate
as gravity or capillary waves. In more complex systems like viscoelastic liquids or gels the
transient or permanent elasticity allows for modified transverse elastic waves at free surfaces
[74]. They are excited e.g. by thermal fluctuations or by imposed temperature patterns on
the surface. In ferrofluids magnetic stresses at the surface come into play. In particular, in an
external magnetic field normal to the surface there is a focusing effect on the magnetization
at the wave crests of an undulating surface with the tendency to increase the undulations
[75]. At a critical field strength no wave propagation is possible and the surface becomes
unstable with respect to a stationary pattern of surface spikes (Rosensweig or normal field
instability). Combining the two aspects of elasticity and superparamagnetic response and
using linearized dynamic equations and boundary conditions we get the general surface wave
dispersion relation for ferrogels (in a normal external field), which contains as special cases
those for ferrofluids and non-magnetic gels and can be generalized to viscoelastic ferrofluids
and magnetorheological fluids. A linear stability analysis reveals the threshold condition,
above which stationary surface spikes grow. This critical field depends on gravity, surface
tension and on the elastic (shear) modulus of the gel, while the critical wavelength of the
emerging spike pattern is independent of the latter. As in the case of ferrofluids neither the
threshold nor the critical wavelength depends on the viscosity.

To derive the surface wave dispersion relation several approximations are made [48].
Of the various reversible and irreversible dynamic cross couplings between flow, elasticity
and magnetization discussed above, we only keep those of them, which are presumably the
relevant ones for the present problem. In particular, we keep the magnetic Maxwell and the
elastic and viscous contributions to the stress tensor. The magnetization M is assumed to
have relaxed to its static value given by the magnetic field and magnetostatics, divB = 0 and
curlH = 0, can be applied. Global incompressibility, divo = 0, and incompressibility of
the gel network, ug, = 0, is employed and only the shear elastic modulus p2 and the shear
viscosity v, enter the stress tensor.

Neglecting the thermal degree of freedom, magnetostriction, and taking the simplest form
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for the dynamics of the elasticity we are left with the linearized dynamic equations

0

gpvi + VjO'ij = —pg5iz (1842)
0 1
aéij — §(vi'l)j + Vj’l)i) = 0. (1843)

where the gravitational force (~ g) is acting along the negative z axis.

We model our system by an originally flat surface z = 0 dividing the magnetic gel (z < 0)
from vacuum (z > 0), where the applied external field (B"*¢ = Bpe, = H"*°) is normal to
the surface.

At the free surface we need boundary conditions for our dynamic variables. First, there
are the magnetic ones [76], the mechanical ones guaranteeing a stress-free surface, and the
(linearized) kinematic one

exH = exH"* e-B=e-B"" (18.44)

exo-e = exo’.e (18.45)

e-oc-e—e-0'-e = pgf&+odive (18.46)
0

—& = v, 18.47

ot ! (1847)

where £(x,y,t) describes surface displacements. The unit vector e is the surface normal,
e = V(z—8/|V(z — &) and dive is twice the mean curvature. The vacuum stresses
(superscript vac) are solely due to the magnetic fields (vacuum Maxwell stress tensor). The
normal stress difference between the magnetic gel and the vacuum is balanced by gravity and
the Laplace stress due to curvature of the surface and the surface tension o.

The system of equations and boundary conditions 18.42-18.47 always has the trivial so-
lution (ground state), where the surface is flat (¢ = 0, eg = e.), flow and deformations are
absent (v = 0, u;; = 0), and the fields are constant (M, = Moe. with My = (1 — 1/p) By,
where £ is magnetic permeability).

We now allow for periodic surface undulations &(, y, ) = € exp(—ikyx — ikyy + iwt)
with frequency w = wy — ¢\ (wp and A real) and wave vector k = (k;, k,,0) describing
propagating and damped surface waves. For w = 0 a stationary spatial pattern is obtained.
Generally w is a complex function of k. Deviations from the ground state of all the other
variables have to be proportional to £(x, y, t) and in a linear theory the amplitude é is unde-
termined.

To have a nontrivial solution for the resulting set of linear algebraic equations, the deter-
minant of coefficients must vanish. This leads to the dispersion relation of surface waves for
ferrogels [48]

pw® (2fi (w)k* — pw?) + pw? <0k3 + pgk + 2fiz(w)k? — lﬁuM@’f)

pw2 1/2
—4i3(w) k* [1 - <1 - W) ] =0. (1848)
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with the frequency dependent fis(w) = po + iwvs . In the absence of an external magnetic
field (M = 0) Equation 18.48 reduces to the dispersion relation for nonmagnetic gels [74].
It also contains as a special case the surface wave dispersion relation for ferrofluids (in an
external field) by choosing ji2 = iwvs. It can be generalized to viscoelastic ferrofluids, whose
elasticity relaxes on a time scale 7, by replacing o with iw7 s /(1 + iwt) [74], and to
magnetorheological fluids by allowing 2, 12, and 7 to be functions of the external field.

18.4.3.2 Rosensweig instability

The effect of an external magnetic field perpendicular to the surface is a destabilizing one
[75]. From Equation 18.48 it is evident that an external field leads to an effective reduction
of the surface stiffness (provided by surface tension, gravity or elasticity) and decreases the
frequency (squared) of the propagating waves in all regimes by ~ MZk?. If the field is large
enough, this reduction is the dominant effect and can lead to w = 0 and thus, to the breakdown
of propagating waves. Indeed, Equation 18.48 can be slightly reinterpreted: It is an equation
for that external field strength (or Mj), where a surface disturbance with wave vector k and
frequency wy relaxes to zero or grows exponentially for A negative or positive, respectively.
For A = 0 such a surface disturbance is marginally stable (or unstable) against infinitesimal
disturbances. The function M still depends on wy and k and has to be minimized with respect
to the latter quantity in order to get the true instability threshold.

For wy = 0 (stationary instability) the linear threshold condition is completely indepen-
dent of 5 and simplifies to [48]

1+p

2 _ rg
M= (0k+ - +2u2) . (18.49)

Minimizing with respect to k leads to the critical wave vector k. = 1/pg/c and the critical
field M2 = (2/p)(1 + p) (\/Tpg + p2). Obviously, k. is identical to that in ferrofluids and
not dependent on elasticity, but the critical field is enhanced by elasticity. The latter finding
is no surprise, since elasticity increases the surface stiffness. For typical polymer gels with
a shear elastic modulus of 1 kPa, the elastic contribution to M. exceeds the surface tension
contribution roughly by a factor of 5 and elasticity is the dominant factor. Critical values of
100 - 200 Gauss for M, have to be expected for typical samples. The critical wavelength is
in the range of 1 cm, which for surface waves lies in the elasticity dominated regime. Thus,
if the system cannot choose the optimal (critical) wavelength, but is fixed to a prescribed
one like in many surface wave scattering experiments, the field necessary to destabilize the
surface wave is about M, in the elastic regime and higher in the other ones, where k& > k. or
k < k.. For very soft gels with ps < 10 Pa, the influence of the elasticity is rather negligible
and ordinary ferrofluid behavior is found.

A linear theory can neither determine the actual spike pattern, nor the true nature of the
instability (forward, backward etc.). The standard weakly nonlinear (amplitude expansion)
theory that provides suitable amplitude equations, by which these questions can be answered,
is more complicated in the present situation due to two problems. First the driving force
of the instability is manifest in the boundary conditions, but not in the bulk equations, and
second the surface profile (the location where the boundary conditions have to be applied)
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changes with the order of the amplitude expansion. Thus, for ferrofluids a different path
has been chosen [77, 78]. Neglecting the viscosity (and all other dynamic processes) from
the beginning, the system is Hamiltonian and its stability governed by a free energy, more
precisely by the surface free energy, since the magnetic destabilization acts at the surface. We
generalize this approach to (isotropic) ferrogels by taking into account in addition the elastic
free energy [49]. The results have to be taken with the caveat that neglecting the viscosity is
justified at the (linear) instability threshold, but is an unproven assumption for the nonlinear
domain and for the pattern formation and selection processes.
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........ €~ 2

Figure 18.15: Qualitative sketch (not to scale) of the evolution of the amplitudes for squares
(Ag) and hexagons (A g ) [adopted from [49] (with permission)]. The dashed lines correspond
to the case of a ferrofluid while the solid lines qualitatively describe the behavior for ferrogels
with finite shear modulus 9. The dotted lines represent the unstable branches. (Adapted from
Bohlius, S., Pleiner, H., and Brand, H.R., J. Phys. Cond. Matter, 18, S2671, 2006.)

After some rather involved algebraic calculations the stability diagram for a square and a
hexagon spike pattern is obtained (Figure 18.15) where the amplitudes are shown as function
of the reduced external field strength (¢ = po constitutes the linear threshold field). We note a
decrease in size of the hysteretic region (for negative € — p2) with increasing shear modulus.
The second hysteretic region for the transition between squares and hexagons also shrinks
with increasing po. This result should be experimentally detectable, at least qualitatively. This
picture has recently been corroborated by deriving the amplitude equation for this problem
[79].

18.5 A COMPARISON WITH THE PHYSICAL PROPERTIES OF
LIQUID CRYSTALLINE GELS AND ELASTOMERS

Most of the other chapters of this book deal with the preparation, the characterization and
the physical properties of liquid crystalline gels and liquid crystalline elastomers (cf. [80] for
an early review covering the material until about 1998). Therefore we discuss here briefly
similarities and differences of these systems compared to the magnetic gels studied in this
chapter.
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First of all one notices a big difference in the width of the hydrodynamic regime for water-
based gels like PVA gels. For example, from the completely flat plateau value of G’ shown in
the inset of Figure 18.13 we conclude that the hydrodynamic regime for this class of magnetic
gels covers at least the frequency range from 100 mHz to 1 kHz, that is four orders of magni-
tude. We note that the upper bound for the frequency of the hydrodynamic regime in magnetic
gels is actually not known as yet, since the technical limitation of the piezorheometer used
for these experiments set an upper limit of about 2 kHz. However, clearly the upper bound
must be lower than that for a water- or acetone-based magnetic fluid, which is typically about
2 MHz. In contrast to PVA gels, PDMS gels have a much reduced hydrodynamic regime and
show a cross-over to non-hydrodynamic behavior around 100 Hz. This can be traced back to
the viscoelastic effects of the PDMS gels.

These observations should be compared with our knowledge about the hydrodynamic
regime in the fields of liquid crystalline gels and elastomers. There we have shown (cf.,
e.g., Ref. [57], that the cross-over from the hydrodynamic regime to the regime, where more
microscopic, non-hydrodynamic effects become important, takes place at about 10 to 100 Hz
for a nematic elastomer as is evidenced by the frequency dependence of G’ and G”. Even
earlier we have already pointed out [53, 54], that for smectic A elastomers this cross-over
arises for even lower frequencies (~ 1 — 10 Hz), thus cutting down even further in frequency
the applicability of the hydrodynamic approach in these layered systems. In Refs. [53, 54]
this further reduction of the hydrodynamic regime has been linked to the formation of giant
clusters involving the mesogenic side-chains organized in layers.

From this comparison it emerges, that magnetic gels have a comparable hydrodynamic
range to liquid crystalline elastomers, when they are based on typical polymers (PDMS),
while there is a much larger hydrodynamic regime than in most LCEs when they are water-
based like magnetic gels on PVA basis. We note that from the dynamic investigations of
magnetic gels as well of liquid crystalline elastomers and gels it emerges that piezorheometry
is an ideally suited tool to probe the dynamic mechanical properties of both types of systems.

Another important issue, which has not yet been addressed for magnetic gels, but has
turned out to be very important for LCEs is the question to what extent the preferred direction
(the director in LCEs and the direction of the frozen-in magnetization in anisotropic magnetic
gels) can act as an independent macroscopic variable.

In LCEs this topic is closely related to the importance of relative rotations between the
director associated with nematic order and the rotations of the polymer network [66, 69]. In
nematic LCEs the consequences of relative rotations for the onset of instabilities as well as
for the reorientation behavior under an external force such as shear has been studied in quite
some detail - compare, for example, Refs. [2,57,81,82]

For anisotropic magnetic gels the study of the question whether the direction of the
frozen-in magnetization is a macroscopic variable is a challenge for future experimental
investigations. In Sections 18.3 and 18.4 on the macroscopic properties and novel cross-
coupling effects we have outlined several possibilities to couple to variations of the preferred
direction in magnetic gels. From the experimental investigations carried out so far there ap-
pear to be several features, which can possibly influence this question. As discussed in Section
I, the experimental results obtained under static external magnetic fields depend sensitively
on several factors including the use of iron versus magnetite particles, on the concentration of
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magnetic particles, for example ~ 2% versus ~ 30%, and also on the question whether one
uses an aqueous or a polymeric ‘solvent’. As a conclusion we stress that the study of the in-
teraction between the magnetic particles and the network clearly needs further investigations
statically as well as dynamically.

One of the most remarkable features of nematic side chain LCEs is a plateau-type be-
havior of the stress-strain curve when a liquid single crystal elastomer (LSCE) is subjected
to a mechanical stress perpendicular to the uniform director orientation of the LSCE [83].
Therefore naturally the question arises whether all or any of the anisotropic magnetic gels
produced so far also show a plateau-like behavior in the stress-strain curve under analogous
conditions as LSCEs.

In this connection it might help to summarize some of the key issues raised and discussed
so far concerning the plateau observed for LSCEs. Different models have been put forward
for LSCEs by the group around Warner and Terentjev. In their first model nematic LCEs are
an anisotropic rubber and the director is not a macroscopic degree of freedom [84]. Here,
the plateau in the stress-strain curve is interpreted to be evidence for ‘soft elasticity’, for
which there is no other experimental evidence as yet. The concept of soft elasticity goes
back originally to Golubovic and Lubensky [85], who developed it for a novel type of solids
(not yet found experimentally). In such a solid one starts from an isotropic phase without an
external field [85] and obtains spontaneously a preferred direction. Clearly this concept does
not apply to the LSCEs studied experimentally by Kiipfer and Finkelmann, since in their
case the preferred direction is not at all spontaneous, but rather generated by the crosslinking
carried out under an external mechanical stress. It has been shown recently shown recently
[86], that one can obtain a plateau in the stress-strain curve without invoking the concept of
soft elasticity. Thus one arrives at the conclusion that there is no experimental evidence for
“soft elasticity” in the LSCEs as they exist today.

Later on Terentjev and Warner acknowledged that due to the non-spontaneous preferred
direction a modification of the concept of “soft elasticity” was necessary; they called it “semi-
soft elasticity”, since it exhibits the vanishing of the relevant effective elastic coefficient ex-
actly at the beginning and end of the plateau. Such a soft mode behavior (resembling that
at a second order phase transition) is in marked contrast to the original “soft elasticity” pic-
ture featuring a Nambu-Goldstone scenario, where the relevant linear elastic coefficient is
identically zero by symmetry. Nevertheless, soft mode behavior is not a signal of “semi-soft
elasticity”, but can also be obtained by conventional nonlinear elasticity in combination with
nonlinear relative relations [87]. Finally, we point out that the experimental situation regard-
ing the soft mode behavior is still controversial and not yet settled.
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