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We present the derivation of the macroscopic equations for uniaxial ferrogels. In addition to the
usual hydrodynamic variables for gels we introduce the magnetization and the relative rotations
between the magnetization and the network as macroscopic variables. The relative rotations intro-
duced here for a system with magnetic degrees of freedom are the analog of the relative rotations
introduced by de Gennes in nematic elastomers for rotations of the director with respect to the elas-
tomeric network. These variables give rise to a large number of static as well as dynamic effects due
to their coupling to the magnetization, the strain field, and the density of linear momentum. A few
of them are discussed for specific geometries, for example, the case of a shear-induced magnetization
perpendicular to the preferred direction.
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I. INTRODUCTION

In recent decades gels and especially ferrogels became
a promising class of materials for applications in many
fields. Ferrogels are chemically cross-linked polymer net-
works that are generated using a ferrofluid as a compo-
nent. As was shown in many publications [1]-[3], there
exists a coupling between the elastic and magnetic de-
grees of freedom allowing to control the mechanical be-
havior by applying external magnetic fields. This might
lead to many different applications from soft actuators
or micromanipulators in technical fields to applications
in medicine where they might act as artificial muscles
[4] or as carriers for drugs to guarantee controlled drug
release. Frequently discussed is the application in hyper-
thermia due to the heating of magnetic gels in alternating
external fields [5]. In our model we will assume that the
particles show some kind of interaction with the polymer
network although the mechanism is not yet well under-
stood.

Until 2002 interest focused on isotropic ferrogels. The
first attempt to generate anisotropic ferrogels was made
by Mitsumata et al. [6]. They produced gels that con-
tained barium ferrite particles of micrometer size that led
to a remnant magnetization without applying an external
field. This anisotropy seemed to affect the sound speed.
The first anisotropic ferrogels using ferrofluids contain-
ing monodomain ferromagnetic particles were produced
in 2003 by Zŕınyi et al. [2] and Collin et al. [7], and
showed anisotropic features qualitatively and quantita-
tively, respectively. To produce these uniaxial gels, the
cross-linking process was performed in an external mag-
netic field. In this situation the nanosized ferromagnetic
particles form columns and fibers that are larger than the
network mesh size [7], because the stabilizing coating of
the particles [8] was reduced in its efficiency due to the
low pH value needed to start the cross-linking process.
These chains are fixed in the network, interacting in a

way that is so far only partially understood, leading to a
frozen-in magnetization which in turn gives rise to sev-
eral effects in external shear and magnetic fields. In this
paper we want to consider this type of gel and we discuss
several interesting effects.

To derive the equations describing the macroscopic dy-
namics of these uniaxial ferrogels we will use the hydro-
dynamic method. In this method we obtain the hydrody-
namic equations by using symmetry and thermodynamic
arguments. These equations hold in the long wavelength
limit and for sufficiently low frequencies. We use this
method because of its generality and its applicability to
many different systems in the hydrodynamic regime. But
one has to introduce some phenomenological parameters
and transport coefficients that cannot be derived by this
method. These parameters have to be determined by
microscopic models or one has to measure them in ex-
periments.

The method is not restricted to hydrodynamic vari-
ables only. In some systems non-hydrodynamic relax-
ation processes become so slow that they are comparable
to macroscopic time scales. Then one must consider these
macroscopic variables in the description as well. There
is, however, no general rule to decide which processes be-
have this way. The identification of these macroscopic
variables has to be done for each system separately.

In this work we generalize the set of hydrodynamic
equations for isotropic ferrogels [9] to these applicable to
uniaxial ferrogels. We then discuss some of the effects
mediated by couplings between the frozen-in magnetiza-
tion and the elastic polymeric network. We make pre-
dictions for uniaxial magnetic gels, which can be tested
experimentally. So far we are not aware of any experi-
mental work investigating the cross-coupling effects dis-
cussed here.
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II. DERIVATION OF MACROSCOPIC
EQUATIONS

A. Hydrodynamic and macroscopic variables

To set up the macroscopic equations for uniaxial ferro-
gels we start with the identification of the relevant vari-
ables [10]. We can separate them into three classes. The
first class of variables, also called the hydrodynamic vari-
ables, contains those already known from a simple fluid,
the mass density ρ, the energy density ε, and the momen-
tum density g. In our case we add another variable, the
concentration of ferromagnetic particles c. To the sec-
ond class belong the variables that are related to spon-
taneously broken continuous symmetries. In our case we
take into account the magnetization M and the strain
field εij . The first one is related to the spontaneously bro-
ken rotational symmetry while the latter one describes
the spontaneously broken translational symmetry. We
will introduce a unit vector mi defined by mi = Mi/|M|
pointing to the direction of magnetization in analogy to
the director ni in nematic liquid crystals. But there is a
significant difference. While both are even under parity,
the unit vector of magnetization m is odd under time
reversal. This will permit static as well as dynamic cou-
plings to other variables that are odd under time rever-
sal. We can then define the transverse Kronecker ten-
sor δ⊥ij = δij − mimj and we have, together with the
Levi-Cevità symbol εijk, three invariants of the system
in terms of which the coupling tensors and the transport
tensors can be expanded. In a last step we consider a
variable first introduced by de Gennes for liquid crys-
talline elastomers [11] called relative rotation Ω̃i. This
variable belongs to the class of slowly relaxing variables
and describes the relative rotation between the polymer
network and the orientation of the magnetization. It is
defined by

Ω̃i = δmi − Ω⊥
i = δmi −

1
2
mj (∇iuj −∇jui) (1)

where we introduced a vector ui describing the displace-
ment field of the network and the variation of the orienta-
tion of the magnetization δmj . Since mi is a unit vector,
m · δm = 0. This variable is odd under time reversal and
even under parity.

B. Statics and thermodynamics

To get the static properties of our system we formulate
the local first law of thermodynamics relating changes in
the entropy density σ to changes in the hydrodynamic
and macroscopic variables discussed above. We find the
Gibbs relation

dε = T dσ + µdρ + µcdc + vidgi + HidBi + h
′M
i dMi

+ΦM
ij d(∇jMi) + Ψijdεij + WidΩ̃i (2)

In Eq.(2) the thermodynamic quantities temperature T ,
chemical potential µ, relative chemical potential µc, ve-
locity vi, magnetic field Hi, the magnetic molecular fields
h
′M
i and ΦM

ij , the elastic stress Ψij and the molecular field
Wi are defined as partial derivatives of the energy den-
sity with respect to the appropriate variables [10]. If we
neglect surface effects and integrate Eq.(2) by parts we
can obtain an expression for the Gibbs relation that we
want to use throughout the rest of this paper

dε = T dσ + µdρ + µcdc + vidgi + HidBi

+hM
i dMi + Ψijdεij + WidΩ̃i (3)

where the molecular field hM
i is given by hM

i = h
′M
i −

∇jΦM
ij .

To determine the thermodynamic conjugate variables
we need an expression for the local energy density. This
energy density must be invariant under time reversal as
well as under parity and it must be invariant under rigid
rotations, rigid translations, and covariant under Galilei
transformations. In addition to that this energy density
must have a minimum, because there exists an equilib-
rium state for the gel. Therefore the expression for the
energy density needs to be convex. Taking into account
these symmetry arguments we write down an expansion
for the generalized energy density up to second order in
the variables that describe deviations out of that equi-
librium and considering several interesting third order
terms including magnetostriction

ε =
1
2
BiBi +

α

2
MiMi −MiBi −

1
2
γijklMiMjεkl

+
1
2
µijklεijεkl +

1
2
Kijkl(∇iMj)(∇kMl)

+
1
2
D1Ω̃iΩ̃i + D2

(
mjδ

⊥
ik + mkδ⊥ij

)
Ω̃iεjk

+σσ
ijk(∇iMj)(∇kδσ) + σρ

ijk(∇iMj)(∇kδρ)

+σc
ijk(∇iMj)(∇kδc) + εij(χσ

ijδσ + χρ
ijδρ + χc

ijδc)

+cρρ(δρ)2 + cσσ(δσ)2 + ccc(δc)2 + cρc(δρ)(δc)
+cρσ(δρ)(δσ) + cσc(δσ)(δc) + cijkgi∇jMk

+
1
2ρ

gigi + acM
2δc + aσM2δσ + aρM

2δρ (4)

Apart from the energy density of a normal fluid binary
mixture, Eq.(4) contains the magnetic energy as well as
the elastic energy. It is worth mentioning that we get –
because of the negative time reversal property of the mag-
netization – a coupling between the curl of M and the
momentum density mediated by the tensor cijk, which
takes the form cijk =

(
c||miml + c⊥δ⊥il

)
εljk. This kind

of coupling is very similar to one of the couplings appear-
ing in superfluid 3He-A first introduced by Graham [12].
In this system one defines an axial vector l parallel to
the direction of the net orbital momentum of the helium
pairs. This vector does not commute with the total angu-
lar momentum vector and therefore this variable breaks
the continuous rotational symmetry spontaneously, simi-
larly to the magnetization in our system. The source free
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part of the momentum density of 3He-A is proportional
to the curl of this vector l while the proportionality is
given by ~/2m and a coupling tensor cij .

Because we discuss a uniaxial system, the tensors will
have more independent constants than in the isotropic
case of Jarkova et al. [9]. The tensor of the elastic energy
for example now has five independent constants instead
of only two and takes the form

µijkl = µ1δ
⊥
ijδ

⊥
kl + µ2(δ⊥ikδ⊥jl + δ⊥il δ

⊥
jk − δ⊥ijδ

⊥
kl) (5)

+ µ3mimjmkml + µ4(mimjδ
⊥
kl + mkmlδ

⊥
ij)

+ µ5(mimkδ⊥jl + mimlδ
⊥
jk + mjmkδ⊥il + mjmlδ

⊥
ik)

while the magnetostrictive tensor will have six indepen-
dent constants

γijkl = γ1δ
⊥
ijδ

⊥
kl + γ2(δ⊥ikδ⊥jl + δ⊥il δ

⊥
jk − δ⊥ijδ

⊥
kl) (6)

+ γ3mimjmkml + γ4mimjδ
⊥
kl + γ5mkmlδ

⊥
ij

+ γ6(mimkδ⊥jl + mimlδ
⊥
jk + mjmkδ⊥il + mjmlδ

⊥
ik)

The tensor Kijkl describes contributions to the local en-
ergy density due to spatial changes of the direction of
the magnetization as well as of its magnitude. We get
six independent constants for this coupling,

Kijkl =
1
2
K1

(
δ⊥ijδ

⊥
kl + δ⊥il δ

⊥
jk

)
+ K2mpεpijmqεqkl

+ K3mkmiδ
⊥
lj + K4mimjmkml + K5mjmlδ

⊥
ik

+
1
4
K6

(
mimlδ

⊥
kj + mjmkδ⊥il + mkmlδ

⊥
ij

+mjmiδ
⊥
kl

)
(7)

There are two more contributions to the energy den-
sity due to the coupling between the strain field and the
variables associated with the relative rotations. One is
proportional to D1 and the other proportional to D2.
One can interpret these coefficients as a measure for the
coupling strength of the magnetic particles to the poly-
mer network, although the microscopic mechanism of this
interaction is not precisely understood so far.

Now we are left with the couplings between the scalars
ρ, c and σ and the strain field as well as with the coupling
between the gradient of the scalars and the gradient of
the magnetization. The tensors take the following form,
respectively:

χξ
ij = χξ

||mimj + χξ
⊥δ⊥ij (8)

σξ
ijk = σξ

1mimjmk + σξ
2mjδ

⊥
ik + σξ

3(miδ
⊥
jk + mkδ⊥ij) (9)

where ξ can be either ρ, σ, or c.
We now give the expressions for the conjugated vari-

ables in terms of the hydrodynamic and macroscopic vari-
ables. They are defined as partial derivatives with respect
to the appropriate variable, while all the other variables
are kept constant, denoted by ellipses at the parentheses

in the following. We obtain

vi =
(

∂ε

∂gi

)
...

=
1
ρ
gi + cijk∇jMk (10)

Hi =
(

∂ε

∂Bi

)
...

= Bi −Mi (11)

h
′M
i =

(
∂ε

∂Mi

)
...

= αMi −Bi − γijklMjεkl

+ 2acMiδc + 2aσMiδσ + 2aρMiδρ (12)

ΦM
ij =

(
∂ε

∂(∇jMi)

)
...

= Kijkl∇kMl + σξ
ijk∇kδξ + cijkgk (13)

Ψij =
(

∂ε

∂εij

)
...

= −1
2
γijklMkMl + µijklεkl + χσ

ijδσ

+ D2(mjδ
⊥
ik + miδ

⊥
kj)Ω̃k + χρ

ijδρ + χc
ijδc (14)

Wi =
(

∂ε

∂Ω̃i

)
...

= D1Ω̃i + D2(mjδ
⊥
ik + mkδ⊥ij)εjk (15)

δT =
(

∂ε

∂δσ

)
...

= χσ
ijεij + 2cσσδσ + cρσδρ + cσcδc + aσM2 (16)

δµ =
(

∂ε

∂δρ

)
...

= χρ
ijεij + 2cρρδρ + cρcδc + cρσδσ + aρM

2 (17)

δµc =
(

∂ε

∂δc

)
...

= χc
ijεij + 2cccδc + ccρδρ + ccσδσ + acM

2 (18)

We used integration by parts to obtain expression (3) for
the local energy density, where the new molecular field
hM

i was given by hM
i = h

′M
i −∇jΦM

ij . If we use Eqs. (12)
and (13) we find

hM
i = αMi −Bi − γijklMjεkl + 2acMiδc + 2aσMiδσ

+ 2aρMiδρ−Kijkl∇j∇kMl − (∇jKijkl)(∇kMl)

− σξ
ijk∇j∇kδξ − (∇jσ

ξ
ijk)(∇kδξ)

− cijk∇jgk − gk∇jcijk (19)

C. Dynamic equations

To determine the dynamics of the variables we take
into account that the first class of our set of variables
contains conserved quantities that obey a local conser-
vation law while the dynamics of the other two classes
of variables can be described by a simple balance equa-
tion where the counterterm to the temporal change of the
quantity is called a quasicurrent. As a set of dynamical
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equations we get

∂tρ +∇igi = 0 (20)

∂tσ +∇i(σvi) +∇ij
σ
i =

R

T
(21)

ρ∂tc + ρvi∇ic +∇ij
c
i = 0 (22)

∂tgi +∇j(vjgi + δij [p + B ·H] + σth
ij + σij) = 0 (23)

∂tMi + vj∇jMi + (M× ω)i + Xi = 0 (24)
∂tεij + vk∇kεij + Yij = 0 (25)

∂tΩ̃i + vk∇kΩ̃i + Zi = 0 (26)

where we introduced the vorticity ωi = (1/2)εijk∇jvk

and

σth
ij = −1

2
(BiHj + BjHi) +

1
2

(Ψjkεki + Ψikεkj) (27)

In Eq.(27) we implemented the requirement that the en-
ergy density should be invariant under rigid rotations
[10].

The pressure p in Eq.(23) is given by ∂E/∂V and reads
for our system

p = −ε + µρ + Tσ + v · g (28)

In the equation for the entropy density (21) we intro-
duced R, the dissipation function which represents the
entropy production of the system. Due to the second law
of thermodynamics R must satisfy R ≥ 0. For reversible
processes this dissipation function is equal to zero while
for irreversible processes it must be positive. In the fol-
lowing we will split the currents and quasicurrents into
reversible parts (denoted with a superscript R) and irre-
versible parts (denoted with a superscript D).

D. Reversible dynamics

If we again make use of the symmetry arguments men-
tioned above and use Onsager’s relations we obtain the
following expressions for the reversible currents up to lin-
ear order in the thermodynamic forces

gi = ρvi − ρcijk∇jMk (29)

jσR
i = −κR

ij∇jT −DTR
ij ∇jµc + ξTR

ij ∇lΨjl (30)

jcR
i = −DR

ij∇jµc + DTR
ij ∇jT + ξcR

ij ∇lΨlj (31)

σR
ij = −Ψij − cRJ

ijkhM
k − νR

ijklAkl + ξσR
ijkWk (32)

Y R
ij = −Aij + ξY R

ijk Wk

+
1
2
λM

[
∇i(∇× hM )j +∇j(∇× hM )i

]
− 1

2
∇i(ξR

jk∇lΨkl + ξTR
jk ∇kT + ξcR

jk ∇kµc)

− 1
2
∇j(ξR

ik∇lΨkl + ξTR
ik ∇kT + ξcR

ik ∇kµc) (33)

XR
i = bR

ijh
M
j + λM εijk∇j∇lΨkl − cRJ

jkiAjk

+ ξXR
ij Wj (34)

ZR
i = τR

ij Wj − ξXR
ij hM

j − ξσR
kli Akl − ξY R

kli Ψkl (35)

Compared to the reversible currents and quasicurrents
of isotropic ferrogels we have the additional quasicurrent
of relative rotations with its counterterms in XR

i , σR
ij ,

and Y R
ij . These terms describe the dynamic coupling of

relative rotations to the magnetization, the momentum
density and the network respectively. The first coupling
– mediated by the tensor ξXR

ij – is an additional term that
exists neither in nematic liquid crystalline elastomers [13]
nor in superfluid 3He-A, while the second coupling – ξσR

ijk
– already appeared in nematic liquid crystalline elas-
tomers. The third coupling – ξY R

ijk – is also an addi-
tional one and will be discussed in detail in the following
section. The additional term in the momentum density
already appeared in superfluid 3He-A and we will dis-
cuss one of the consequences of this coupling later. The
tensors in the currents for the entropy density and the
concentration all have to be odd under time reversal, be-
cause the currents have to be odd under time reversal.
They are all of the form

αR
ij = αRεijkmk (36)

Furthermore, we find for the coupling terms in the stress
tensor

cRJ
ijk = cRJ

1

(
miδ

⊥
jk + mjδ

⊥
ik

)
+ cRJ

2 mkδ⊥ij

+ cRJ
3 mimjmk (37)

νR
ijkl = νR

1 (εikpδ
⊥
jl + εjlpδ

⊥
ik + εilpδ

⊥
jk + εjkpδ

⊥
il )mp

+ νR
2 (εikpmjml + εjlpmimk + εilpmjmk

+εjkpmiml)mp (38)

ξσR
ijk = ξσR

(
miδ

⊥
jk + mjδ

⊥
ik

)
(39)

The coupling terms in the quasicurrent for the relative
rotations are

ξXR
ij = ξXRεijkmk (40)

ξσR
kli = ξσR

(
mkδ⊥li + mlδ

⊥
ki

)
(41)

τR
ij = τRεijkmk (42)

ξY R
kli = ξY R (mkεlip + mlεkip)mp (43)

We are now left with the tensor coupling the molecular
field hM

i to the magnetization quasicurrent which takes
the form

bR
ij = bRεijkmk (44)

E. Irreversible dynamics and entropy production

We can use the dissipation function R as a Liapunov
functional to derive the irreversible currents and quasi-
currents. One can expand the function R (R/T is the
amount of entropy produced within a unit volume per
unit time) into the thermodynamic forces using the same
symmetry arguments as in the case of the energy density.
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We obtain

R =
1
2
κij(∇iT )(∇jT ) + DT

ij(∇iT )(∇jµc)

+ξT
ij(∇iT )(∇kΨjk) +

1
2
Dij(∇iµc)(∇jµc)

+ξc
ij(∇iµc)(∇kΨjk) +

1
2
νijklAijAkl

+ξσ
ijkAijWk + cJ

ijkAijh
M
k +

1
2
ξij(∇kΨik)(∇lΨjl)

+
1
2
bijh

M
i hM

j +
1
2
τijWiWj + ξX

ij Wih
M
j (45)

where we have again introduced some tensors. The ten-
sors κij , DT

ij , ξT
ij , Dij , ξc

ij , ξij , and bij take the form

αij = α||mimj + α⊥δ⊥ij (46)

while the tensors τij and ξX
ij read

aij = aδ⊥ij (47)

This is due to the fact that only the parts of the relative
rotations perpendicular to the preferred direction con-
tribute to the entropy production [13]. For the viscosity
tensor νijkl we obtain

νijkl = ν1δ
⊥
ijδ

⊥
kl + ν2(δ⊥ikδ⊥jl + δ⊥il δ

⊥
jk − δ⊥ijδ

⊥
kl) (48)

+ ν3mimjmkml + ν4

(
mimjδ

⊥
kl + mkmlδ

⊥
ij

)
+ ν5

(
mimkδ⊥jl + mimlδ

⊥
jk + mjmkδ⊥il + mjmlδ

⊥
ik

)
We are left with the tensors ξσ

ijk and cJ
ijk, which take the

form

aijk = a (miεjkl + mjεikl) ml (49)

To obtain the dissipative parts of the currents and qua-
sicurrents we take the partial derivatives with respect to
the appropriate thermodynamic force,

jσD
i = −

(
∂R

∂(∇iT )

)
...

= −κij(∇jT )−DT
ij(∇jµc)− ξT

ij(∇kΨjk) (50)

jcD
i = −

(
∂R

∂(∇jµc)

)
...

= −Dij(∇jµc)−DT
ij(∇jT )− ξc

ij(∇kΨjk) (51)

σD
ij = −

(
∂R

∂(∇jvi)

)
...

= −νijklAkl − ξσ
ijkWk − cJ

ijkhM
k (52)

Y D
ij =

(
∂R

∂Ψij

)
...

= −1
2
[∇i

(
ξjn∇lΨnl + ξT

jn∇nT

+ξc
jn∇nµc

)
+ (i ↔ j)] (53)

ZD
i =

(
∂R

∂Wi

)
...

= τijWj + ξX
ij hM

j + ξσ
kliAkl (54)

XD
i =

(
∂R

∂hM
i

)
...

= bijh
M
j + ξX

ij Wj + cJ
kliAkl (55)

FIG. 1: Sketch of experimental setup. The conelike arrow
represents the magnetization of the uniaxial gel while the flat
arrows represent the external force.

III. SOME SIMPLE SOLUTIONS

In this section we discuss some experimental setups
that could reveal some of the unusual cross-coupling ef-
fects of this class of materials.

A. Shear-induced magnetization

Our system differs qualitatively from the isotropic fer-
rogels by the macroscopic variables associated with rela-
tive rotations. These variables describe, as already men-
tioned, the relative rotations between the orientation of
the magnetization and the polymer network. In this sec-
tion we discuss an effect associated with these variables.
We apply a constant shear flow and determine the change
of magnetization. We assume that the direction of the
frozen–in magnetization in the uniaxial ferrogel is par-
allel to the x direction while the shear is applied in the
x−y plane as sketched in Fig.1. Furthermore we assume
spatial homogeneity. In this case the dynamic equations
for the momentum density and the scalars ρ, σ and c are
satisfied automatically. Contributions due to magneto-
striction effects are neglected. These effects are of higher
order in the variables (cf. Eqs.(14) and (19) while we fo-
cus on linear effects. These assumptions reduce the set
of dynamic equations to

∂tMi + Xi = 0 (56)

∂tΩ̃i + Zi = 0 (57)
∂tεij + Yij = 0 (58)

Now we need to find the relevant expressions for the qua-
sicurrents. In the quasicurrent for the magnetization we
can discard the term λM εijk∇lΨkl, because this term is
of first order in the derivatives and does not contribute



6

in a homogeneous system

XR
i = bR

ijh
M
j + ξXR

ij Wj − cRJ
jkiAjk (59)

XD
i = bijh

M
j + ξX

ij Wj + cJ
kliAkl (60)

The same arguments hold for the quasicurrents of the
relative rotations and of the strain field. Therefore we
obtain

ZR
i = τR

ij Wj − ξXR
ij hM

j − ξY R
kli Ψkl − ξσR

kli Akl (61)

ZD
i = τijWj + ξX

ij hM
j + ξσ

kliAkl (62)

Y R
ij = ξY R

ijk Wk −Aij (63)

Y D
ij = 0 (64)

To obtain a closed set of equations for the macroscopic
variables, we substitute for the conjugate variables the
expressions found in Sec. II B. Again we discard con-
tributions due to magnetostriction and inhomogeneous
contributions. Furthermore, we apply an external force,
which is in our case a constant shear flow. We take the
simple shear Skl to be in the x− y plane,

Skl = δkyδlx∇kvl (65)

Therefore we obtain

Ψkl = µklmnεmn + D2(mkδ⊥lm + mlδ
⊥
km) Ω̃m (66)

Wk = D1Ω̃k + D2(mmδ⊥kn + mnδ⊥km)εmn (67)

hM
j = αδMj − δBj =

(
α− 1

χ0

)
δMj (68)

In the last expression we used the fact that in the case
of a small frozen–in magnetization and no external mag-
netic fields the magnetic flux density B is only due to
the intrinsic magnetization and that it can be expressed
as B = χ0M. We will use α′ as an abbreviation in the
following,

α′ = α− 1
χ0

(69)

We do not apply an external magnetic field. Therefore
we can assume that the magnitude of the magnetization
is not changed but only its direction. We can write

M = M0 (m + δm) (70)

If we use the material tensors in our specific geome-
try we can derive the following set of equations for the

different components of each macroscopic variable

0 = ξY R(D1Ω̃z + 2D2εxz)−
1
2
Aext

xy (71)

0 = −ξY R(D1Ω̃y + 2D2εxy) (72)

0 = bRα′M0δmz + ξXR(D1Ω̃z + 2D2εxz)− cRJ
1 Aext

xy

+ b⊥α′M0δmy + ξX(D1Ω̃y + 2D2εxy) (73)

0 = −bRα′M0δmy − ξXR(D1Ω̃y + 2D2εxy)

+ b⊥α′M0δmz + ξX(D1Ω̃z + 2D2εxz) + cJAext
xy (74)

0 = τR(D1Ω̃z + 2D2εxz)− ξXRα′M0δmz

+ 2ξY R(2µ5εxz + D2Ω̃z) + τ(D1Ω̃y + 2D2εxy)

+ ξXα′M0δmy − ξσRAext
xy (75)

0 = −τR(D1Ω̃y + 2D2εxy) + ξXRα′M0δmy

− 2ξY R(2µ5εxy + D2Ω̃y) + τ(D1Ω̃z + 2D2εxz)

+ ξXα′M0δmz + ξσAext
xy (76)

From the first and second equation we find a relation be-
tween the components of relative rotations and the strain
field, so that we can reduce this system to one with four
equations for four variables, which is now shown in ma-
trix form

−Z1

N1
−Z2

N1
0 0

Z2

N2
−Z1

N2
0 0

−D1Z3

N3

D1Z4

N3
0

Z5

N3

−Z4

N4
−Z3

N4

Z5

D1N4
0



 δmy

δmz

εxy

εxz

 = Aext
xy

 1
1
1
1



(77)
with Z1 = 2ξY Rb⊥α′M0, Z2 = Z1b

R/b⊥, Z3 =
2ξY RξXα′M0, Z4 = Z3ξ

XR/ξX , Z5 = 8(ξY R)2(D1µ5 −
D2

2), N1 = ξXR − 2ξY RcRJ
1 , N2 = ξX + 2ξY RcJ , N3 =

2ξY RD2 + τRD1 − 2ξY RD1ξ
σR, and N4 = τ + 2ξY Rξσ.

The solution takes the form

δmy =
bR(ξX + 2ξY RcJ)− b⊥(ξXR − 2ξY RcRJ

1 )
2ξY Rα′M0(b2

⊥ + bR2)
Aext

xy

(78)

δmz = −b⊥(ξX + 2ξY RcJ) + bR(ξXR − 2ξY RcRJ
1 )

2ξY Rα′M0(b2
⊥ + bR2)

Aext
xy

(79)
For this experimental setup we thus predict a rotation

of the magnetization out of the shear plane as well as out
of the x − z plane, which is proportional to the applied
external force as can be seen from Eqs.(78) and (79).
This effect is due to the variables associated with rela-
tive rotations, because all contributions are proportional
to either ξXR, ξX , or ξY R, which represent the dynam-
ical coupling of relative rotations to the magnetization
and the strain field, respectively. The change of the di-
rection of the magnetization should be easily observable
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in the laboratory since Hall probes can sensitively mea-
sure magnetic fields.

B. The influence of (∇×M) on the mass current

As pointed out in Secs. II B and IID, there is an addi-
tional contribution to the momentum density due to the
coupling of the curl of the magnetization to the momen-
tum density via the tensor cijk (29). Here we want to
discuss consequences of this unusual coupling. It is use-
ful to discuss the Fourier transform of the energy density,
where we focus on those terms which contain the momen-
tum density and gradients of the magnetization

εk =
∫ {

1
2ρ

gigi + cijkgi (∇jMk)

+
1
2
Kijkl (∇iMj) (∇kMl)

}
eik·r d3r (80)

Since we do not consider an external magnetic field in
the following, we can assume that the magnitude of the
magnetization is constant. In this case the coupling ten-
sor Kijkl takes a form similar to the known Frank elastic
tensor,

Kijkl =
1
2
K1

(
δ⊥ijδ

⊥
kl + δ⊥il δ

⊥
jk

)
+ K2mpεpijmqεqkl

+K3mkmiδ
⊥
lj (81)

while the tensor cijk has the form discussed in Sec. II B

cijk =
(
c||miml + c⊥δ⊥il

)
εljk (82)

We introduce a new coordinate system in analogy to
the one introduced by Brand et al. [14] for superfluid
3He-A

ê1 =
k− (k ·m)m
| k− (k ·m)m |

(83)

ê2 = m× ê1 (84)
ê3 = m (85)

One can expand the momentum density g and the change
of the direction of the magnetization δm with respect to
this basis

g = g1ê1 + g2ê2 + g3ê3 (86)
δm = δm1ê1 + δm2ê2 (87)

It is worth mentioning that the individual components
have different properties under time reversal and parity,

εT
g1

= −1, εP
g1

= +1 (88)

εT
g2

= +1, εP
g2

= +1 (89)

εT
g3

= +1, εP
g3

= −1 (90)

εT
δm1

= −1, εP
δm1

= −1 (91)

εT
δm2

= +1, εP
δm2

= −1 (92)

FIG. 2: Perturbation to measure ρ. The conelike arrows rep-
resent the orientation of the magnetization while the flat ar-
row represents the direction of the perturbation.

Due to this different transformation behavior, the statics
of the components g2 and δm1 are decoupled completely
from the other components. We obtain the inverse sus-
ceptibility matrix of these two variables by taking the sec-
ond order partial derivatives of the Fourier transformed
energy density with respect to the appropriate variables

χ−1
ij (k) =

(
ρ−1 +iM0c⊥k||

−iM0c⊥k|| M2
0 (K1k

2
⊥ + K3k

2
||)

)
(93)

where i, j ∈ {g2, δm1}
From Eq.(93) one can derive the static susceptibilities

χg2g2 = ρ (K1k
2
⊥ + K3k

2
||)N

−1 (94)

χδm1δm1 = M−2
0 N−1 (95)

χg2δm1 = ic⊥k||ρ M−1
0 N−1 (96)

with N = K1k
2
⊥ + K3k

2
|| − ρc2

⊥k2
||. Now we will discuss

the transverse momentum density correlation function in
more detail. Therefore we determine the limiting cases
for either setting k⊥ or k|| to zero first

lim
k⊥→0

lim
k||→0

χg2g2 = ρ (97)

lim
k||→0

lim
k⊥→0

χg2g2 =
ρ

1− ρc2
⊥/K3

(98)

Because we discussed the autocorrelation function of the
transverse momentum density, Eqs.(97) and (98) give the
inertia of the gel against velocity perturbations along the
planes with a normal vector either perpendicular or par-
allel to the preferred direction, respectively. In the first
case the usual inertia (Fig. 2) due to mass can be mea-
sured while in the second case (Fig. 3) an increase of the
inertia can be observed.

The inverse susceptibility matrix of the other three
components is obtained in the same manner and reads

χ−1
ij =


ρ−1 0 +iM0c⊥k||

0 ρ−1 +iM0c||k⊥

−iM0c⊥k|| −iM0c||k⊥ M2
0 (K2k

2
⊥ + K3k

2
||)


(99)
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FIG. 3: Perturbation to measure ρ (1 − ρc2
⊥/K3)

−1. Again
the cone–like arrows represent the orientation of the magne-
tization while the flat arrow represents the direction of the
perturbation.

where i, j ∈ {g1, g3, δm2}.
We again obtain the static susceptibilities by inverting

this matrix

χg1g1 = ρ
(
K2k

2
⊥ + K3k

2
|| − c2

||k
2
⊥ρ
)

N−1 (100)

χg3g3 = ρ
(
K2k

2
⊥ + K3k

2
|| − c2

⊥k2
||ρ
)

N−1 (101)

χg1g3 = c⊥k||c||k⊥ρ2N−1 (102)

χg1δm2 = ic⊥k||ρM−1
0 N−1 (103)

χg3δm2 = ic||k⊥ρM−1
0 N−1 (104)

χδm2δm2 = M−2
0 N−1 (105)

with N = K2k
2
⊥ + K3k

2
|| − ρc2

⊥k2
|| − ρc2

||k
2
⊥. In analogy

to the case of the variables g2 and δm1 we can evaluate
the limiting expressions for the momentum density cor-
relation function for setting either k⊥ or k|| to zero, first.
One obtains

lim
k⊥→0

lim
k||→0

χg3g3 =
ρ

1− ρc2
‖/K2

(106)

lim
k||→0

lim
k⊥→0

χg3g3 = ρ (107)

lim
k⊥→0

lim
k||→0

χg1g1 = ρ (108)

lim
k||→0

lim
k⊥→0

χg1g1 =
ρ

1− ρc2
⊥/K3

(109)

Here an increase of the inertia can be measured for ve-
locity perturbations parallel to the preferred direction
(Fig. 4) while for perturbations perpendicular to the
frozen–in magnetization the usual inertia is observed
(Figs. 5 and 6).

It is worth mentioning that there exists a correlation
between the parallel and the transverse components of
the momentum density given by Eq.(102).

C. Field-induced strain

As a last example we want to discuss the k0 dynamics
of the system, if we apply an oscillating external mag-
netic field perpendicular to the frozen-in magnetization.

FIG. 4: Perturbation to measure ρ(1−ρc2
||/K2)

−1. The cone-
like arrows represent the orientation of the magnetization
while the flat arrow represents the direction of the pertur-
bation.

FIG. 5: Perturbation to measure ρ. Again the conelike arrows
represent the orientation of the magnetization while the flat
arrow represent the direction of the perturbation.

In our case we apply a magnetic field in the z direction
(cf. Fig. 7). We again identify the relevant equations. At
first one can neglect all the dynamic equations for the
concentration c, the entropy density σ, the mass den-
sity ρ, and the momentum density g, because these are
true hydrodynamic variables and contain apart from the
time derivative of the variable the gradient of the current
related to that variable. From the quasicurrents of the
remaining variables we consider only the contributions

FIG. 6: Perturbation to measure ρ. The conelike arrows rep-
resent the orientation of the magnetization while the flat ar-
row represents the direction of the perturbation.
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FIG. 7: Sketch of experimental setup. The big cone-like ar-
row represents the magnetization of the uniaxial gel while the
four smaller arrows represent the direction of the alternating
external magnetic field.

without gradient terms. We obtain for their reversible
parts

Y R
ij = ξY R

ijk Wk (110)

XR
i = ξXR

ij Wj + bR
ijh

M
j (111)

ZR
i = −ξXR

ij hM
j − ξY R

kli Ψkl + τR
ij Wj (112)

And in the same manner for the irreversible parts

Y D
ij = 0 (113)

XD
i = bijh

M
j + ξijWj (114)

ZD
i = τijWj + ξX

ij hM
j (115)

One ends up with a rather complex set of equations.
Here we concentrate on some qualitatively different fea-
tures due to the dynamic couplings (and neglect magne-
tostriction).

After applying an oscillatory external field in the z
direction, an oscillating magnetization in the z direction
is induced due to Eqs.(68) and (69). This magnetization
leads to an oscillation of the relative rotations (57), (61),
and (62), where the maximum amplitudes are related by

Ω̃y ∼ −ξXRα′M0 δmz (116)

Ω̃z ∼ ξXα′M0 δmz (117)

The relative rotations couple to the strain field (58,63)
and therefore lead to an oscillating strain in the plane
perpendicular to the applied field as well as in the plane
spanned by the frozen–in and the induced magnetization
with

εxy ∼ D1 ξY RξXM0 δmz (118)

εxz ∼ D1 ξY RξXRM0 δmz (119)

These shear strains should be experimentally observable
with piezoelectric transducers.

Secondly we observe that, apart from the directly in-
duced magnetization parallel to the applied field, a mag-
netization into the third direction, perpendicular to both,
the frozen-in and the applied field, is induced as well (56)
and (59)

M0δmy ∼ bRHext
z (120)

This effect differs from the case of isotropic ferrogels stud-
ied by Jarkova et al. [9] where this effect appears in
higher order of the magnetization, because in this case
one has to induce a magnetization first. Experimentally
one can measure these effects by using Hall probes.

For the last effect the crucial coefficient bR can be cal-
culated explicitly, using the microscopic theory of linear
response. In this limit we make use of the results given
by Forster, who used the projector formalism of Zwanzig
and Mori. In the notation of [14] the temporal change of
a macroscopic variable ai is given by

δȧi(x, t) = (iωij − σij)(−i∇) δλj(x, t) (121)

In this notation the λi are the thermodynamic forces of
the system. The matrix ωij is called the frequency matrix
while the matrix σij is called the memory matrix.

At t = 0 the external perturbation is switched on, and
the system starts to relax toward the new equilibrium.
The initial time derivative δȧi(k, t = 0+) is given by [14]

δȧi(k, t = 0+) = −iωij(k)δλj(k) (122)

Using the explicit expressions for the dynamic coupling
tensors bR

ij and ξXR
ij , one obtains for the dynamical equa-

tion of the magnetization

Ṁi + bRεijkmk︸ ︷︷ ︸
ωMM

hM
j + ξXRεijkmkWj = 0 (123)

In the last equation we discarded the contributions of
the irreversible parts of the quasicurrent. This can be
done because the frequency matrix ωij contains the in-
stantaneous collisionless contributions which are purely
reversible [14].

Explicitly the frequency matrix for the autocorrelation
of the magnetization reads, using Eq.(123)

ωMM =

 0 ibRmz −ibRmy

−ibRmz 0 ibRmx

ibRmy −ibRmx 0

 (124)

Using for the frequency matrix ωij of the variables Mi

and Mj the representation

ωij(k) =
∫

dω

π
χ
′′

ij (125)

=
1
~

∫
dx e−ik·x

〈[
M̂i (r− r′, t− t′) , M̂j (0, 0)

]〉
and taking into account the commutator for the magne-
tization

〈[M̂i, M̂j ]〉 = i~εijk〈M̂k〉 (126)
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we obtain for the frequency matrix in the microscopic
theory

ωMM =

 0 iM0〈m̂z〉 −iM0〈m̂y〉
−iM0〈m̂z〉 0 iM0〈m̂x〉
iM0〈m̂y〉 −iM0〈m̂x〉 0

 (127)

Now we can compare these matrices obtained in two
different ways. We can conclude, that the coefficient bR

in the k0 dynamics and in the linear and homogeneous
regime is given by

bR = M0 (128)

This result is also compatible with the results of Jarkova
et al. for isotropic ferrogels, because if we set M0 to zero,
the coefficient bR and thus the instantaneous response to
the external field vanish.

IV. DISCUSSION AND CONCLUSIONS

Ferromagnetic gels are uniaxial, if the frozen-in magne-
tization denotes the only preferred direction. Such ma-
terials are potentially very interesting for a variety of
applications. Here we investigate theoretically the ther-
modynamics and hydrodynamics of these systems. Uni-
axial magnetic gels show on the one hand similarities to
other anisotropic gels, like nematic elastomers, and to
isotropic ferrofluids and ferrogels, but the combination
of preferred direction, magnetic degree of freedom and
elasticity makes them unique and very peculiar.

Prominent features are the relative rotations between
the magnetization and the elastic network, which couple
dynamically flow, shear, and magnetic reorientation. As
a result, shear flow in a plane that contains the frozen-in
magnetization induces a rotation of the magnetization,
not only within the shear plane, but also out of the shear
plane. This behavior is qualitatively different from that
of other types of materials. The basic results hold, even
if the constant shear flow is replaced by an oscillating

one, which is very likely done in actual experiments, al-
though the formulas for that case will become much more
complicated.

Another outstanding aspect of the hydrodynamics of
this material is the difference between the mass current
density (mass density times velocity) and the momen-
tum density due to a nonvanishing magnetization vor-
ticity. Unheard of in other classical condensed phases,
it is known from some uniaxial quantum fluids, where,
however, experiments on this aspect are impossible. In
uniaxial ferromagnetic gels the static susceptibilities for
momentum fluctuations (the long wavelength limit of the
static momentum correlation functions) are given by the
(bare) density for some geometries only, but show an
increased renormalized effective density for other direc-
tions.

Finally we looked at an oscillating external magnetic
field that induces not only an oscillation of the magneti-
zation in the direction of the external field, but also oscil-
lating shear strains. The latter are found in planes that
contain the frozen-in magnetization and either the exter-
nal field or the third, perpendicular direction. In addi-
tion, the external field also induces a magnetization com-
ponent perpendicular to both the field and the frozen-in
magnetization. The reversible transport coefficient that
governs this effect can be calculated by referring to the
microscopic quantum mechanical spin-type dynamics for
magnetic moments and using the projector formalism to
evaluate the frequency matrix. This coefficient vanishes
with the magnetization and is, thus, characteristic for
this type of ferromagnetic gel.
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