PHYSICAL REVIEW E 69, 046301 (2004)

Influence of a magnetic field on the
Soret-effect-dominated thermal convection in ferrofluids

Andrey Ryskin and Harald Pleiner
Maz-Planck-Institut fiir Polymerforschung, D 55021 Mainz, Germany
(Received 17 November 2003)

We investigate theoretically the influence of a magnetic field on the growth of convective rolls in
a slab of ferrofluid subject to a vertical temperature gradient. Due to the pronounced Soret effect
of these materials in combination with a considerable solutal expansion, a dynamic description as
a binary mixture is appropriate. We first derive a comprehensive set of magnetic field effects in the
statics and dynamics of binary mixtures. Among those, the two prominent ones, the Kelvin force
and magnetophoresis, are studied in detail with respect to their influence on the thermal convection
behavior. The main difference from the case without an external field rests in the importance of the
boundary layers, which influence the bulk problem through the magnetic boundary conditions. We
discuss an analytical approximate solution and compare it with a numerical multimode expansion.

PACS numbers: 47.20.-k, 44.27.+g, 75.50.Mm

I. INTRODUCTION

Ferrofluids are dispersions of heavy solid ferromagnetic
grains suspended in a carrier liquid [1]. With a typical
diameter of 10 nm the particles are quite large on molecu-
lar length scales, resulting in an extremely small particle
mobility [2]. This leads to a situation where demixing
effects take place on time scales far beyond any reason-
able observation time. On the other hand, ferrofluids are
characterized by a large thermodiffusive or Soret effect.
As aresult of the joint action of thermal and solutal buoy-
ancy forces (e.g., for a cyclohexane carrier), the critical
Rayleigh number Ra,. for the onset of convection is dra-
matically reduced as compared to the pure fluid reference
value Ra = 1708. However, Ra, is experimentally inac-
cessible due to the extremely slow growth of convection
patterns, requiring extremely large observation times. It
has been shown recently [3] that, starting from an ini-
tial motionless configuration with a uniform concentra-
tion distribution, convective perturbations grow even at
Rayleigh numbers well below the threshold Ra? of pure
fluid convection. This happens within a time small com-
pared to the creeping solutal diffusion time, but almost
as fast as pure-fluid convection does at Ra > Ra?.

Here we investigate the influence of an external mag-
netic field on this convection scenario for positive separa-
tion ratio ¢. We first (Sec. II) review the hydrodynamic
equations for binary mixtures in the presence of an ex-
ternal magnetic field. We assume the magnetization to
be already relaxed to its equilibrium value on the time
scales under consideration. The magnetic field effects
then come basically in two different varieties. First the
Maxwell stress, which can be written as a Kelvin force
in the momentum conservation law (the Navier-Stokes
equation), and second the temperature and concentration
dependence of the magnetic susceptibility in the statics
that gives rise to a field dependence of heat and con-
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centration currents (magnetophoresis). If a temperature
gradient is applied across the ferrofluid layer, the experi-
mentally relevant convection-free ground state is not the
true stationary state with a linear concentration profile,
but the purely conducting state with a constant concen-
tration (apart from a very thin boundary region) [3] and
a linear magnetic field profile (Sec. III). The stability
of this ground state is investigated by solving approxi-
mately the nonlinear dynamic equations for deviations
from it. Within the usual Boussinesq approximation
five magnetic field effects, characterized by dimension-
less numbers proportional to the field strength squared,
show up in the equations and boundary conditions (Sec.
IV). Among them, M, the strength of the magnetic rela-
tive to the buoyancy force, and Ms, the magnetophoretic
number, seem to be the most important.

To solve the system of equations we first set up a mul-
timode Galerkin description (Sec. V), where in particu-
lar for the concentration and the magnetic potential the
inclusion of many modes turn out to be essential. An ap-
proximate ansatz is solved analytically (Sec. VI). Here
the necessity of dealing carefully with the boundary layer
profiles of concentration and magnetic potential (Appen-
dices A and B) becomes obvious. This approximate ana-
lytical solution is compared with the numerical Galerkin
results, in particular with respect to the influence of the
Kelvin force (M) in Sec. VII. The role of magnetophore-
sis (Mz) on the instability behavior is discussed in Sec.
VIIL.

II. BASIC EQUATIONS

Ferrofluids can be treated as a superparamagnetic con-
tinuum [1] that consists of two different nonreacting ma-
terials (binary mixture). An external magnetic field eas-
ily induces a considerable magnetization in the fluid.



This magnetization is in principle a dynamic degree of
freedom. However, it relaxes rather quickly to its equi-
librium value and orientation given by the Maxwell field
H. Thus, for the time scales of interest for the convection
problem we can always assume M = M (H). Here we
review the hydrodynamic equations for a binary mixture
subject to an external static magnetic field and bring
them into a form suitable for the convection problem.
The hydrodynamics is most easily set up by using those
quantities as dynamic variables that are related to local
conservation laws [4]. In our case, those are the density
p, momentum density pv, entropy density o and con-
centration C' (of magnetic particles), while the chemical
potential u, the velocity v, the temperature T, and the
relative chemical potential u. are taken as their respec-
tive thermodynamic conjugate quantities. The dynamic
equations read [4]

p+div(pv) =0 (1)

&+v~VJ:V~RVT+V~DTV(%)+§ (2)

p(C’+v-VC):V-DV(%)+V~DTVT (3)

p(0; +v;V ;) + Vip = Vip vV, + M;V,Hj + pgF

(4)
while the magnetic field H and induction B are deter-
mined by Maxwell’s equations, which read in the static
and nonconducting case

V.-B =0 (5)
VxH =0 (6)

Generally, due to the presence of an external field, the
transport coefficients %, D1, and D should be written as
tensors of the form D;; = Ddé;; + DReiijk with Hall-
or Righi-Leduc-type contributions [5]. However, those
terms are inoperative for the geometry considered below.
The same is true for similar linear field contributions to
the viscosity tensor [5], which can qualitatively change
the patterns in the Benard instability in ferronematics
[6], but do not contribute here.

As usual for convection problems we apply the Boussi-
nesq approximation implying incompressibility dive = 0,
neglect of the dissipation function R in Eq.(2), and taking
all material parameters as constants except for the den-
sity in the gravity force pg”. The Navier-Stokes equation
(4) has been written in a form where the Kelvin force,
with M = B — H [7], shows up on the right hand side.
Due to the incompressibility approximation the pressure
p is no longer a thermodynamic variable and its depen-
dence on the magnetic field is irrelevant. It is only an
auxillary quantity that ensures the incompressibility con-
dition for all times, but it is not needed in the following.

As discussed above, the magnetization is not a dynamic
degree of freedom.

To close the system of equations we need the static
relations between the conjugate quantities and the vari-
ables. Standard procedure gives [4]

o7 = Lso+8.6C (7)
cy

Spre = v0C + B. 60 (8)

§B = (1+)6H 9)

derived from an energy density

€= 60+2£((50') +8.(00)(0C)+
cv

N |-

(50)2+%(1+X)(5H)2

(10)

In this form the static equations generally are not
suitable for ferrofluids, since the magnetic susceptibil-
ity x depends considerably on the concentration (of the
magnetic particles), the temperature and the external
field. Switching to the temperature as variable by a
Legendre transformation, € = € — (00)(d7'), and taking
X = X(T7 Ca H2) we get

Brev

So = %H(ST_ 5C+xr Ho-6H (11

511 = 11 6C + ﬁHCV

6T +x.Ho-0H  (12)

0B =1+ x0)0H + H(x7 0T + x.6C + xugH,-0H)

(13)
where xg is the (constant) magnetic susceptibility taken
at the equilibrium field H, equilibrium temperature Tp,
and equilibrium concentration Cy. It is assumed to be a
known function of H3. Up to second order derivatives of
x we have

28X

cy = cv——H0 572 (14)
B = Bt g T (15)
WH—ﬁﬁ;varnggé); (16)
xr = G B o
Xe = gé‘,u{g% (18)
YH = 4;2‘2 +2H? (aié()Q (19)

implying an H3 dependence of the usual static suscepti-
bilities. In principle, the static susceptibilities can be ar-
bitrary functions of H3. Thermodynamic stability (pos-
itivity of the energy functional) requires the following
positivity conditions:

cg >0, v > 0, 1+x0>0, €>0,
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) , CHE> XQTHg, YHE > Xng,
(20)
with € =1+ xo + xu H [8].
In order to retain the buoyancy force, the temperature
and concentration dependence of the density has to be
kept in the gravity force, which can be written as

p9F = —gppo(1+ap 6T — . 6C —ayHy-6H) 6;., (21)

taking the z direction as the vertical one. The magnetic
field contribution to the buoyancy force due to deviations
of the magnetic field from its constant and homogeneous
equilibrium value has been introduced for completeness.

Combining the static and dynamic part, the basic
equations are

dive = 0 (22)

CH 8 8

= RAT + DT%HAO + DT§HO CAH (23)
0 0

o (8 - V) C =DM AC+DrAT+DXH, AH
ot Po Po
(24)

<; +ov- V) (curlv); — vA(curlv);

= €ik29p(ViT + a.Vi,C +agHy - Vi, H)
1
+%6ikl(H0 -ViH) (xrViT + x.ViC) (25)

with A = V? and

R &+2DT’6HCV+D<BHCV)2 (26)
poTo poTo )

Bucy
poTo

Dy = Dr+D

(27)

The temperature conduction coefficient is k = &Ty/cq,
the diffusion coeffient D. = D~y /pZ, the Soret coeffi-
cient is Dy = Dr/po, the Dufour coefficient is Dy =
DryuTo/(pocr), and v is the dynamic shear viscosity.
The boundaries are assumed to be ideal thermal con-
ductors; thus the temperature of the fluid at the bound-
aries is identical to the applied temperature. Note that in
real experimental situations the finite heat conductivity
of the boundaries could lead to some noticeable effects
[9], but we are not going to discuss these effects in what
follows. For the velocity field we assume "rigid” bound-
ary conditions, while for the magnetic field and magnetic
induction the usual continuity conditions apply:

n - (Bint - Bext) = Oa (28)
n X (Hznt - Hea:t) = 07 (29)

with 72 the normal to the boundaries. For the concen-
tration of the ferroparticles we have the impermeability
condition, i.e., no flux on the boundaries is allowed,

Dy 7-V C4po Dy #-VT+Dx. Ho-(-V)H = 0. (30)

III. HEAT CONDUCTING STATE

For a layer of thickness d with prescribed temperatures
Ty and 77 at the boundaries z = 0 and d, respectively,
and with infinite lateral dimensions, the pure conductive
state is easily found. The concentration and the magnetic
field show linear z deviations from the equilibrium values,
given by the boundary conditions (28), (30):

v = 0, (31)
T = Ty — Bz, (32)
_ o+ 2p (33)
- 0 D2 2,
D — poxeD
Hz = HO <1+ WHXTEDPOX Tﬂz>7 (34)
2

where 8 = (To—T1)/d, Hy is related to the strength of the
magnetic field outside the layer H§"" by the expression
HE" = [Hy + M(Ho)Jé-), D1 = poDr(1+ O(H3)), and
Dy = Dvyy(1 + O(Hg)). However, as was the case in
thermal convection without a magnetic field [3], to reach
this conductive state one needs to wait untill the very
slow process of concentration diffusion has equilibrated.
A estimated in [3] this takes as long as a week under
the usual experimental conditions. For this reason we
consider the stability not of the state given by Eq. (33)
but of the quasistationary state when the temperature
field Eq. (32) is equilibrated, but the concentration field
is still homogeneous except for very thin boundary layers
near the boundaries. This situation is similar to that
without a magnetic field considered in [3]. With this
approximation the quasi-stationary state reads

v =0, (35)
T = TO_BZa (36)
c = (37)
H, = Hy (1+X?T z) (38)

This state is not a solution of the boundary condition
(30), but it gives a good approximation to the solution
for experimentally relevant times.

IV. DEVIATIONS FROM THE CONDUCTING
STATE

The next step is to write the equations for the devi-
ations from the heat conducting state (35)-(38). To do
so in dimensionless form we introduce the characteristic
scales d for length, d?/k for time (with x = &Tp/cpr), Bd



for temperature, 3D pod/(Dvg) for concentration, r/d
for velocity, and BdxrHo/€ (with € = 1 + xo + xzg HZ)
for magnetic field. For the deviations from the mag-
netic field (38) a scalar potential can be introduced
H = H.,é, — V¢, while the magnetic potential outside
the layer is defined by H.,; = H§" — V¢, . The devi-
ation of the temperature from Eq. (36) is . Then Egs.
(5) and (22)-(25) lead to

V-v=0 (39)

[gt b V)] (0 — MyV.0)
= w(l — M4) + A6 + FA(C — Mgvz(b) (40)

[aat +(v- v)} C=LA0+C—MV.¢)  (41)

Pir {gt (v V)} (curlv); — Alcurlv),

= Ra eikzvk[(l + Ml) 0 — (1/) + 1/JmM1) C
+(M5 - Ml)vz¢]
—Ra M, €1, (ViV.9)Vy (0 — ¥, C) (42)

(vg + M3AL)¢ = vz(0 - d)mc) (43>

Ape =0 (44)

where w is the z component of the velocity. The trans-
verse Laplacian A; = A — V2. The nondimensional
parameters introduced here are: the Rayleigh num-
ber Ra = agBgrd*/(kv), the Prandtl number Pr =
v/k, the separation ratio ¥ = a.poDr/(ceygD), the
magnetic separation ratio v, = —XcpoD7/(XTYVED),
the Lewis number L = yycyD/(p2kTy) = D./k, the
strength of the magnetic force relative to buoyancy
My = Bx%HZ/(pogrwe), the magnetophoretic number
My = Dx.x1HZ/(poDr€), the nonlinearity of magneti-
zation M3z = (1+x0)/€ ~ 1—xgHZ/(1+X0), the relative
strength of the temperature dependence of the magnetic
susceptibility My = x%HZTy/(cy€), the ratio of mag-
netic to thermal buoyancy M5 = apxrHE/(gé), and
the Dufour number F = D% /(Dk) = DsDs/(kD.). The
stability conditions (20) require My < 1 and M, >
—1.

According to our choice of "rigid” and ideally conduct-
ing boundaries, the boundary conditions for the devia-
tions from the conducting state read

Olesy = 0 (45)

W)y = 0 (46)

Vowl_yy = 0 (47)
Vo0+C—MV.g)|myy = 1My (48)

and the magnetic boundary conditions (28) and (29) are

E(vz¢ + wmc) — V.o ‘Zzi% =0 (49)
Vi¢=Vigel.—r1 =0 (50)

These boundary conditions close the problem of finding
the fields v, 0, C, ¢, and ¢..

V. SIMPLE GALERKIN SOLUTION

The set of equations derived in the previous section is
still unnecessarily complicated. We will simplify it first
by neglecting the Dufour effect, i.e., putting F = 0, as
is usually done for any liquid. Second, we discard My,
which is a common simplification in the description of
instabilities in ferrofluids [10, 11]. Since My is not re-
lated to concentration effects, which we are interested
in here, we expect not to loose any reasonable aspect of
the problem under consideration. The same is true for
the coefficient M5. It may be important in a situation
where the concentration dynamics is not considered at
all, since in that case it is the only nonthermal contri-
bution to buoyancy. Thus, we are left with 3 magnetic
field dependent effects characterized by M 2 3. The first
denotes the influence of the Kelvin force and is expected
to have the dominant influence on the convection behav-
ior. The second effect, which we will treat in a second
step, constitutes magnetophoresis, the dependence of the
concentration current on the magnetic field. The third
effect is due to the nonlinearity of the magnetization as
a function of the Maxwell field. Generally, M3 is rather
close to 1 (the linear case x = const. or M ~ H), since
the dependence on Mj is rather weak we always take
M3 = 1.1. The parameter v is known to be between 10
and 100 and can have negative or positive sign depend-
ing on the ferrofluid used [12]. Here we consider only the
case of a positive value of ¥. Making a simple estimate,
we find that the value v,,, has the same sign and is of the
same order of magnitude as v for typical ferrofluids.

The boundary value problem obtained in this way is
still too complicated to allow a simple analytical (one-
mode solution), even if unrealistic ”free” boundary con-
ditions are used for the velocity field. This is due to
the magnetic boundary condition (49) which involves the
concentration. Sacrificing this condition, however, would
change the bifurcation scenario qualitatively, rendering
such an analytical solution worthless. Instead, any re-
alistic treatment has to take into account the boundary
layer fields of concentration and magnetic field poten-
tial. We will do this analytically later on in a simpli-
fied way guided by the numerical results, which we will
derive first using the Galerkin technique. To that end
we make the following ansatz of a two-dimensional pat-
tern, which is laterally (in the x direction) infinite and
periodic with wave number k. These equations describe
two-dimensional convection in the form of parallel rolls
along the y axis in an infinite slab of thickness 1. In the



lateral direction we will restrict ourselves to the funda-
mental mode, neglecting higher harmonics, while in the 2z
direction (across the layer) a multimode description will
be used where necessary. We have

C(z,2,t) —Co = co(z,t) + c1(z,t)coskz, (51)
O(z,z,t) = O (z,t) + 601 (z,t) coskx, (52)
ve(z,2,t) = —(1/k)V,wi(z,t)sinkz, (53)
vy(z, 2,t) = wi(z,t)coskx, (54)

o (r,2,t) = ¢Po(z,t) + ¢1 (2, t) coskx. (55)

with incompressibility already built in. We can get rid
of the external potential ¢. by solving Eq.(44) explicitly.
The solutions that vanish at z = foo and satisfy the
boundary condition (50) are ¢, = exp(%) exp(Fkz)p1 (2=
+1,t)coskx for the ranges {1/2,00} and {—1/2, —o0},
respectively. The boundary conditions (49) can then be
written in final form

g(vz(bl + ¢mcl) + k(bl'z:i% =
vz‘éO + wch|z:i% =

(56)
(57)

o O

Substituting Eqgs. (51)-(55) into the nonlinear equa-
tions of motion (39)-(43) and sorting for different lateral
dependencies yields the following system of equations

1
ﬁat (Vﬁ - k2) wy — (Vz — k%)%,

= —Rak?® [(1+ M)0; — (v + Mypm)er — MiV . ¢1]
+Ra M1k (61 — Ymer — Vad1) Vs (0o — Ym o) (58)

8tCO + %Vz (wlcl) = ng [(]. =+ Mg'l/Jm)CO + (1 — Mg)go]

(59)

drer +wi1Vaeo = L (V2 —k?) (e1 + 61 — MoV, 1),
(60)
900+ 3V (w161) = V2 6o, (61)

0¢ 01+ w1V, 0= —wi + (V2 —k?) 01,  (62)

(V2= M3k?) ¢1 =V (01 = ¥mer),  (63)
The field ¢¢ has already been eliminated with the help
of V2¢y = V.(0p — ¥mco). This has also been used to
write the remaining boundary conditions as

V(1 + 01 — MaV.¢1)|.—41/2 = 0, (64)

V(14 Matpy,)co + (1 — M2)0o)|.=+1/2 = 1 — M (65)
01]:=+1/2 = Ool.=+1/2 = 0, (66)

wl\z:il/z = Vzw1|z::t1/2 = 0, (67)

To solve this boundary value problem we adopt vertical
profiles w1, g, 61, cg, 1, and ¢1 in the form

wy(z,t) = A(t)cos® (1z), (68)
01(z,t) = B(t)cosnz, (69)
Oo(z,t) = G(t)sin2wz, (70)
olat) = el o(z:0)
n=N
+ Z an(t)sin (2n + 1) 7z, (71)

c1(z,t) = —01(2,t) + i bn(t) cos2nmz, (72)

"N A, (t) sin 27z

2
= ™

which satisfy the boundary conditions (56),(64)-
(67) identically, if Ag(2 + k) + SN ()4, +
Ym ny:l(—)”bn = 0 is chosen.

We point out that for v» = 0 and v,, = 0 the con-
centration fields decouple from temperature and velocity.
This reduces Egs. (68)-(70) in the absence of the mag-
netic field to the three-mode model introduced by Lorenz
[13] to mimic the dynamics of convective rolls in single-
component Rayleigh-Bénard convection. In the case of
finite magnetic field this is a somewhat modified Lorenz
model for a magnetic fluid [14]. At nonzero ¢ and ¢,
convection is modified by the concentration field but we
can adopt the above few-mode expansion for tempera-
ture and velocity [3] without modifications, because the
diffusivities for heat and momentum are large enough to
prevent the appearance of strong gradients. By way of
contrast, owing to the small Lewis number, the concen-
tration field does build up steep boundary layers, which
we account for by a N-mode Fourier series as given in
Eqgs.(71) and (72). The situation with a magnetic field
is somewhat intermediate, since the magnetic potential
is coupled dynamically (63) and by the boundary condi-
tions (56) to the concentration field with its strong gra-
dients. We use a multimode expansion for the magnetic
field with a number of modes N; which is selected in-
dependently of N. For ¢y the modes are antisymmet-
ric in z, while for ¢; symmetric modes are appropriate.
The numbers N and N; of the contributing modes were
taken large enough to ensure that the results are insensi-
tive against a further increase of these numbers. For the
parameter values considered here, N = 50 and N; = 50
turned out to be sufficient.

VI. APPROXIMATE ANALYTICAL SOLUTION

In this section we derive an approximate analytical sta-
tionary solution, which fits the numerical solution, de-
scribed above, very well. To get this solution, we make



use of the fact that L ~ 107 is extremely small. Starting
with the system of equations (58)-(63), we use the Lorenz
representation of the temperature and velocity field (68)-
(70) and derive approximate solutions for cg, ¢1, and ¢4
avoiding the complicated mode expansion (71)-(73).

Let us first consider Eq. (59). In the stationary case,
we can integrate this equation once. With the boundary
conditions (65) and (67) we find

wicy
2

= LV, [(14 Matm)co + (1 — Ma)bp) — L(1 — M)

(74)
Far from the boundaries ¢y and ¢; are ~ L . This can
easily be seen from the consistency of Eq. (61) with Eq.
(74) taking into account that far from the boundaries the
derivatives of the functions are small. Thus, in Eq. (74)
we can neglect ¢y, when we are far from the boundaries.
Futhermore, we can neglect V.0, compared to 1, since
its influence is very weak [15]. This latter approximation
is good, when the amplitude of the velocity is still small,
since 6 is the nonlinear term in the Lorenz model. Tak-
ing this into account we can get the concentration field
far from the boundaries as

Cc1 = 72L(1 - Mg)/wl. (75)

To satisfy the boundary conditions for ¢; and to find the
profile of the concentration field near the boundaries one
needs to solve the boundary layer problem. The expres-
sion (75) diverges close to the boundaries as 1/(z —1/2)?
(if the boundary is on z = 1/2). Thus, the solution of
the boundary layer problem has to behave asymptoti-
cally like 1/(z —1/2)? far from the boundary, in order to
match with Eq. (75). The boundary layer problem for
the concentration field is considered in the Appendix A.

Since the boundary layer depth § is proportional L/3
(see Appendix A) the contribution of the boundary lay-
ers gives only small ~ L'/3 corrections to the ampli-
tude equation and the expression (75) can be used with
wy = A cos? (12).

The next step is to calculate the magnetic field poten-
tial ¢1 from Eq. (63). To do that we split the magnetic
potential into two parts, ¢1 = ¢11 + ¢12 so that

(V2 — Msk?) 611 = V.04, (76)

with the boundary conditions

EVZQZSH + k¢11|z=i% =0 (78)
€(Ved12 + Ymer) £ koral,—pr = 0 (79)

The solution for ¢q;7 is straightforward and simple
when we take the temperature field in the form of Eq.
(69),

7B ) ksinh(az)
11 = w2 4 a? <sm(7rz) ~ ksinh(a/2) + éa cosh(a/2)>

(80)

with @ = v/Msk. The solution for ¢;» has the form
¢12 = Msinh(az) — %m <sinh(az) /Z cosh(a)cy (&)d¢
0
— cosh(az) /Z sinh(a)c} (f)d«f) (81)
0

with M a constant of integration. Note that ¢12(2) has
to be an antisymmetric function in z. To find M we
consider the boundary condition (79). This is done in
Appendix B with the final result

12 1/3
o) =038 i)
Kb,

X Fsinh(a/2) + éa cosh(a/2) sinh(az) + O(L), (82)

where o = — [ (f(¢)d¢ ~ 2.791 is a real number of
order 1 independent of any parameter of the problem,
and the function f(() is defined in Eq. (A7) in Appendix
A.

Having found an approximate expression for the pro-
files of the concentration and magnetic potential we sub-
stitute them into Eq. (59) and then project this equa-
tion on the weight function cos?(rz). Equations (61)
and (62) are to be projected with the weight functions
sin(27z) and cos(wz), respectively. This leads to a system
of three algebraic equations for the amplitudes A, B, G,
[Eq. (68)-(70)], from which we get the final (implicit)
expression for the saturation amplitude A as a function

(V2 = M3k?®) 12 = —¥mV.ca. (77)  of the parameters of the problem:
|
1874 1+ Mi(n — 277G) 3272 _ 2a \'?
= 1—-Ms)—=|L My, 1 -3G) Moy, | ——————— 83
Here
2 5 ginh 2
n=1- ™ n 3 sn? (a/2) 7 7 (84)
m+a? (724 a?)(47? + a?)(wsinh(a/2) + €a cosh(a/2))

_ §(1 B w2 )+ w2 a 3m3 (872 — a?) sinh(a/2) (85)
=5 w2 +a?’ w2+ a? (mwsinh(a/2) + €acosh(a/2)) a(a* + 20a72 + 647%) ’



275/3 sinh(a /2
—a m*_sinh(a/2) (86)
(a? 4 4m2) (7 sinh(a/2) + €a cosh(a/2))
_ 3ma?
7T e (87)
G, the stationary amplitude of 8y Eq. (70), is
942

(88)

G =
16073 (1 + 3A2/4072)

while B = (572/2A)G. In Eq. (83) we have chosen k = 7
in order to simplify the formula. This is reasonable, since
the wave number of the maximum growth k. is close to
7. The second term on the right of Eq. (83) can be seen
as an expansion in 1,,L?/3 and ¥ L. Since the prefactor
of the former is quite small, we have also kept the leading
contribution to order v,, L. The complete evaluation of
the ¥, L term is hardly worth doing, since it makes for-
mula (83) unnecessary complicated without significantly
changing the quantitative results. The occurrence of frac-
tional powers of A% and L as products with 1,,, and M;
indicates the importance of the boundary layers in the
case of an external field.

VII. INFLUENCE OF THE KELVIN FORCE

We first investigate the influence of the Kelvin force
on the convection and disregard magnetophoresis for the
moment by putting My = 0. The equations for the
mode amplitudes A, B,G,a,, and b, have been solved
by a Runge-Kutta integration. The wave number k, usu-
ally taken to characterize the mode of maximum linear
growth rate A(k, Ra), varies between 3 and 3.5 within
the Rayleigh number regime investigated. However, since
the final predictions of our model turn out not to depend
sensitively on the k value chosen, we adopt in all of our
simulations k£ = 3.1. All runs are started from the ini-
tial configuration of an undisturbed linear temperature
and magnetic field profile and a constant concentration
as given in Egs. (36) - (38), and small random velocity
fluctuations to start the convection process.

In all of our runs the convective motion was found to
settle into a stationary convection in the same way as it
is in the absence of magnetic field [3]. There are roughly
three different regimes of time evolution: linear growth,
nonlinear transition to a saturation state, and the satu-
ration state itself. When we fix the temperature gradient
(i.e., take the Rayleigh number constant) and change the
magnetic field strength, we have the bifurcation picture
as a function of M;. This is the most convenient bifur-
cation curve to compare with experiment, since during
experiments it is much easier to change M; (i.e. the
magnetic field) than the Rayleigh number (i.e. the tem-
perature difference). This bifurcation diagram is shown
in Fig. 1 for different values of the separation ratios 1
and v,,,. These two parameters are related to the two dif-
ferent mechanisms of how the concentration inhomogene-
ity changes the bifurcation picture. The separation ratio

M,
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FIG. 1: The saturation amplitude Asqt = A(t — o0) as a
function of M; at Ra = 1300 for different values of ¥ and ¥,
(see text). The dashed lines are the analytical result (83).

1 is independent of the magnetic nature of the grains
and describes the concentration buoyancy force due to
the density difference of the solvent liquid and the mag-
netic grains. The second mechanism is due to the Kelvin
force, which arises from the concentration variations of
the magnetic particles and the resulting strong variations
of the magnetic susceptibility. This effect relies on the
magnetic nature of the ferrofluid particles and is charac-
terized by the magnetic separation ratio ,,.

Without any concentration variations (¢,, = 0 and
1 = 0) we have the usual pitchfork bifurcation with re-
spect to My (Fig. 1). If only the nonmagnetic mecha-
nism is switched on (v = 10, 9, = 0), the bifurcation
looks like an imperfect one with a nonzero saturation am-
plitude even in the subcritical parameter range. In the
supercritical parameter range the amplitude approaches
that of the homogeneous ferrofluid. If we additionally
switch on the magnetic buoyancy effect (v, = 10),
the bifurcation deviates strongly from the previous cases
and, in particular, has a different saturation behavior for
strong magnetic fields. We should point out that in or-
der to get this numerical result at least 50 modes each
for the concentration and magnetic field have to be taken
into account. Comparing this to the case without a mag-
netic field [3], when 20 modes were more than enough, we
can see the importance of the boundary layers when the
magnetic field is on. In Fig. 1 the analytical results, Eq.
(83), are shown as dashed lines. The agreement between
the numerical and analytical result is very good.

VIII. INFLUENCE OF MAGNETOPHORESIS

In this section we discuss the influence of magne-
tophoresis (M # 0). In the implicit equation for the
amplitude, Eq. (83), the magnetophoretic effect is mani-
fest in two different ways. First, there is the global pref-
actor (1 — Ms) in the second term and, second, there
is the denominator (1 + Matb,,)'/? in the term propor-



tional to L?/3. Since M, is negative but Mo, > —1 [cf.
the discussion after Eq. (44)] both effects grow with the
external field.

The second effect gets very pronounced, when the
product Ms,, approaches its stability limit —1. This
happens for a magnetic field Hy — H, with H? =
yu€X, 2, where, however, the susceptibilities may them-
selves be (weak) functions of HZ for strong fields. In that
limit the boundary layer becomes singular, which is indi-
cated in the numerical approach by the necessity to take
into account more and more spatial modes. The analyti-
cal treatment also breaks down and Eq.(83) is no longer
a good description. The breakdown of thermodynamic
stability also shows up in the diffusion equation for the
concentration

Orc(z,t) = L(1 + 1y, M) 0% c(2, 1) (89)

that follows from Egs. (41) and (43) under the assump-
tion that the temperature equilibrates much faster. For
Hy — H, the diffusional time scale diverges and, there-
fore, the boundary layer profile gets sharper. This can
also be inferred from the Eq. (A9), which shows the
boundary layer depth to scale with [L (141, M2)]*/3. For
the amplitude the effect of M is very weak and hardly
visible in a plot like Fig. 1, except for the immediate
vicinity of the stability limit (1 + Mat,,) = 0.

The breakdown of thermodynamic stability may be re-
lated to particle agglomeration and internal structure for-
mation. The magnetophoretic effect is due to the force
that drives magnetic particles to areas of larger magnetic
field strength. This leads to agglomerations where the
magnetic field is larger and consequently attracts further
particles. This mechanism is compensated by the (mag-
netic field independent) diffusive motion of the particles.
When the strength of the magnetic field exceeds a certain
value, the diffusion fails to prevent agglomeration of the
particles and structures are built. In that case a descrip-
tion in terms of an ordinary binary mixture is no longer
possible.

IX. CONCLUSION

We have derived the complete set of equations to de-
scribe ferrofluids in an external magnetic field in terms
of a binary mixture. Magnetophoretic effects as well as
magnetic stresses have been taken into account in the
static and dynamic parts of the equations. They were
used to investigate the thermal convection instability of
ferrofluids in the presence of an external magnetic field.
As in the case without a magnetic field, the effect of the
concentration field is manifest in an apparent imperfec-
tion of the bifurcation. A magnetic field makes this im-
perfection more prononced. More important, however,
not only does an external magnetic field lead to pro-
nounced boundary layer profiles (with respect to the con-
centration and magnetic potential), this boundary layer
also couples effectively to the bulk behavior due to the

magnetic boundary condition. This makes the numeri-
cal solution of the bifurcation problem considerably more
complicated than without a magnetic field. Nevertheless,
we were able to present an approximate analytical solu-
tion by taking explicitly into account part of the bound-
ary layer behavior. The agreement between the analyti-
cal and the numerical solutions was very good. We also
discuss the limitations of the binary mixture model. In a
strong external field diffusion fails to prevent agglomera-
tion of the particles due to magnetophoresis. In that case
the breakdown of the binary mixture model shows up by
the occurrence of a negative effective diffusion constant.
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APPENDIX A: THE BOUNDARY LAYER
PROBLEM

We consider Egs. (60), (74), and (79) in the vicinity of
the boundary z = 1/2. Near the boundary the derivatives
with respect to z of the functions cg, ¢1, and ¢ are large
and we use this fact to simplify these three equations as

1
5 (11)101) = L(l + MQ?/}m)66 — L(]. - Mg), (Al)
wicy = L(cf — Mz d13), (A2)
3_/2 = _¢m0/17 (Ag)
under the assumptions
U< oly and V2> k% (A4)

Combining these three equations into one we get an equa-
tion for c;

1 L2(1 + Myy,,)? ,

FweL = cf — L(1 — My). (A5)

w
Near the boundary z = —1/2 we have ¢ = z — 1/2 < 1.

Expanding cos?(7z) in powers of ¢ the velocity w; =
An?e? and Eq. (A5) takes the form

2
T A 4

c L(1+M2¢m)2 " 2
2L(1 — Ma)

c1 = —7|—2A(1 — MQ) cip — ¢

(AG)
We rescale the concentration field and z coordinate in
such a way that the final equation becomes independent
of any parameters and appears to be a universal equation
defining the boundary layer profile

S =g, (A7)



FIG. 2: The boundary layer profiles obtained from (a) the
analytical solution f(¢), Eq. (AT7),(b) the multimode numer-
ical solution scaled with Eq. (A9) for M; = 0.1, and (c) for
My = 1.0 (My =0, ¢ = 10, and t,, = 10).

with
m2A 1/3
(momm) = W
1/3
)= -0 (g e) 1€ (49)

Thus, the layer depth 6 scales with L'/3. We assume that
the boundary condition (64) for the concentration field
¢1 can be replaced by a homogeneous one ¢f(+1/2) =0
leading to f’(0) = 0. In this case the boundary layer pro-
file becomes self-similar. As a second boundary condition
we require that the function f(¢) has the asymptotic form
f(¢) — —2/¢? when ¢ — oo, in order to be compatible
with the bulk solution (75). In Fig. 2 we compare the
boundary layer profiles that follow from the analytical so-
lution (A7)—(A9) with those obtained numerically. The
approximaton f’(0) = 0 is good when M is not too large,
e.g., for My = 0.1 the agreement between numerics and
analytics is better than for M; = 1.0. The important
quantity we extract from the boundary layer considera-
tions and that enters Eq. (83) is a = [;° £f/(€)d¢. The
error made by calculating this number using the condi-
tion f'(0) = 0 is of the order of 30% when compared with
the numerical result for My = 1.0, where f/(0) = —0.5
(Fig. 2). This correction would change the analytically
determined amplitudes [Eq. (83) in Fig. 1] by only about
1%.

APPENDIX B: CALCULATION OF THE
MAGNETIC FIELDS ¢12

To satisfy the boundary conditions for the magnetic
potential we need to substitute the expression (81) into

Eq. (79). Doing so we get integrals of the type

1/2 1/2
/ cosh(ag)d, (€)de, / sinh(a€)c, (€)d¢,  (B1)
0 0

which would diverge, if we simply used expression (75)
for the concentration field. To resolve these singularities
we have solved the boundary layer problem for the con-
centration field in the preceding section. Let us consider
the first integral; the second one is treated in the same
way. We can divide this integral into two parts:

1/2 1/2-A
/o cosh(a&)c) (&)d¢ = /0 cosh(a€)cy (€)d¢
1/2
[ coshlag)es (©)de. (B2)
1/2-A

Here A is a small but fixed value, chosen in such a way
that for z > A the bulk profile (75) and for z < A
the boundary layer profile (A9) are valid. In the second
integral we can expand cosh(a€) in the vicinity of & =
1/2. Then we can write

z

? , L (a /
/1 1 COBaE)(©)dE = cosh (%) / RCIGE
—&—asinh(%)/z

1/2-A

= cosh (g) Iy(2) + asinh (g) Li(z)

(€ =1/2)ci(§)dE + ...

+§ cosh (%) Iy(2)+... (B3)

for z — 1/2. Since ¢} is regular at the boundary and the
boundary layer depth § ~ L3, the expansion (B3) is
actually an expansion in powers of L/3.

If we substitute the expression (B3) [and the appropri-
ate one for the second integral in Eq. (B1)] into the po-
tential ¢12 (81), the boundary condition (79) for z = 1/2
takes the form

M (k sinh(%) + & cosh(g)) + kL1 (z — 1/2)
+e[—Io(z —1/2) +¢(1/2)]+... =0 (B4)

where the ellipsis indicates terms of O(L), e.g., Ir(z —
1/2). From the definition of Iy(z) we can see that the
leading contributions in the brackets cancel and only
terms ~ L2/3 are left. Thus, the main contribution to
M is proportional to the integral I (z — 1/2),

kb
ksinh(§) + €a cosh(§)

M=— L(z—1/2). (B5)

With the expression (A9) we can calculate the integral
Li(z—1/2)
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L2
(1 =+ meQ

1/2 1/3  poo
hgﬁymzﬁf >> Acfma+mm,(%>

—1/2)(6)dé = —(1 — M.
Gk =~ (o
where we have replaced A as the upper limit of the integral by co. The error introduced is canceled by the first
integral of Eq. (B2), (which we have not considered so far,) if the bulk and boundary-layer concentration fields ¢; are
matched at z = A. Since in the bulk ¢; ~ L, the remaining contribution of the first integral in Eq. (B2) is of O(L),

which we neglect. Finally, the magnetic field ¢12 in the bulk of the layer takes the form

L2

kb,

¢12(Z) = Oé(l — MQ) (7T4A2(

1/3
1+ 1/JmM2)) ksinh(a/2) + €a cosh(a/2)

sinh(az) + O(L), (B7)

where a = fooo Cf'(¢)d¢ &~ 2.791 is a real number independent of any parameter of the problem.
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