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Thermal convection in binary liquid mixtures is investigated in the limit where the solutal diffu-
sivity is weak but the separation ratio is large. Representative examples are colloidal suspensions
such as ferrofluids. With a grain size being large on molecular length scales, the particle mobility
is extremely small, allowing to disregard the concentration dynamics in most cases. However, this
simplification does not hold for thermal convection: Due to the pronounced Soret effect of these
materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces
are dominant. Indeed, convective motion is found to set in at Rayleigh numbers well below the crit-
ical threshold for single-component liquids. A nonlinear analysis demonstrates that the amplitude
quickly saturates in a state of stationary convective motion.

PACS numbers: 47.20.-k, 44.27.+g

I. INTRODUCTION

Thermal convection in binary mixtures has attracted
much research activity in the past (see [1–3] for a review).
In comparison to the pure fluid case, the dynamics and
the bifurcation scenario are more complicated due to the
extra degree of freedom associated with the concentra-
tion field. Thereby solutal currents are not only driven
by concentration gradients, they occur also in response
to temperature inhomogeneities. This is denoted as the
thermo-diffusive or Soret effect. Its influence on the con-
vective buoyancy force is quantified by the dimension-
less separation ratio ψ. The sign of ψ indicates whether
temperature- and solutal-induced density gradients are
co-aligned (+) or opposed to each other (−). At neg-
ative ψ the motionless conductive state experiences an
oscillatory instability, saturating in a nonlinear state of
traveling waves [3]. On the other hand, at positive ψ the
convective instability remains stationary, but the critical
Rayleigh number for the onset of convection is dramat-
ically reduced as compared to the pure-fluid reference
value Ra0

c = 1708. This is a result of the joint action of
thermal and solutal buoyancy forces. The present paper
is dedicated to the case of positive ψ in colloidal suspen-
sions.

A typical property of binary mixture convection is the
formation of concentration boundary layers [4]. This is a
consequence of the fact that the concentration diffusiv-
ity Dc in mixtures is usually much smaller than the heat
diffusivity κ. For molecular binary mixtures the dimen-
sionless Lewis number L = Dc/κ adopts typical values
between 0.1 and 0.01 [5]. If colloidal suspensions are un-
der consideration, the time scale separation is even more
dramatic. In this context magneto-colloids, also known
as ferrofluids, are a canonical example. These materials
are dispersions of heavy solid ferromagnetic grains sus-
pended in a carrier liquid [6]. With a typical diameter of

10 nm the particles are pretty large on molecular length
scales, resulting in an extremely small particle mobility.
This feature is reflected by Lewis numbers as small as
L = 10−4 [7]. The smallness of L leads to a situation
where de-mixing effects (if any) take place on time scales
far beyond any reasonable observation time. Thus, in
those experiments, where thermodiffusion is irrelevant,
ferrofluids can safely be treated as single-component fluid
systems.

However, ferrofluids are also known to exhibit a very
large separation ratio ψ. This observation is due to the
pronounced thermo-diffusivity of these materials in com-
bination with the fact that the specific weights of the two
constituents (magnetite and water/oil) are quite distinct.
Following investigations of Blums et al. [7], who carried
out experiments with a thermo-diffusion chamber, ψ can
adopt values up to about 100. Recent light scattering
investigations of Bacri et al. [8], reveal ψ-values between
around −200 (for ionic ferrofluids) and up to +30 (cyclo-
hexane carrier) at a volume concentration of 10%. Mean-
while the Soret effect in ferrofluids has also been studied
under the influence of an external magnetic field [9–11].

A fairly small number of papers deals with convection
in ferrofluids. Most of them treat these liquids as single-
component fluids, focusing on the extra drive associated
with the temperature dependence of the magnetization
(pyro-magnetic effect) [12–14]. An experimental study
with a binary system of ordinary ψ and L values has been
reported some time ago [15]. Quite recently Shliomis
and Souhar [16] studied the influence of the concentra-
tion field on thermal convection in ferrofluids without
an external magnetic field. Using linear arguments they
predicted a novel kind of relaxation-oscillation convection
to appear at Rayleigh numbers below Ra0

c. Meanwhile,
magnetic field related effects have also been investigated
in this problem [17].

The purpose of the present consideration is to work out
more closely the role of the concentration field. For the
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sake of concreteness we phrase the discussion in terms
of ferrofluids but point out that the results apply equally
well to any binary mixture with small L and large positive
ψ.

Provided no magnetic field is applied, thermal convec-
tion in a perfectly intermixed ferrofluid is usually believed
[16] to behave as a single-fluid system. However, our in-
vestigation reveals that this is not correct. Rather it is
the combination of both, the weak solutal diffusivity and
the pronounced solutal buoyancy force, which renders the
convective dynamics distinct from the pure fluid case.
It will be demonstrated below that a Rayleigh-Bénard
setup will become unstable at Rayleigh numbers well be-
low Ra0

c . Within a time, small compared to the creeping
solutal diffusion time, convective perturbations are found
to grow up and saturate in a stationary convective state.

The rest of the paper is organized as follows. In the
next section the problem is set up along with the govern-
ing equations and boundary conditions. Sec. 3 presents a
linear analysis specially tailored to account for the slow
concentration diffusion. In Sec. 4 a Galerkin model is em-
ployed for predicting the long time nonlinear convective
behavior.

II. SETTING UP THE PROBLEM

Let us consider a laterally infinite horizontal layer of an
incompressible ferrofluid (density ρ, kinematic viscosity
ν) bounded by two rigid impermeable plates (see Fig. 1).
The setup is heated from below with a temperature dif-
ference ∆T between the plates. In the present paper
we do not consider magnetic field related effects, thus
the evolution equations for non-magnetic binary mixtures
can be adopted. Taking C(r, t) as the concentration of
the solid constituent of the suspension, the dimension-
less equations for the Eulerian fields of velocity v(r, t),
temperature T (r, t), and C(r, t) read in Boussinesq ap-
proximation [18–20]

∇ · v = 0, (1)

∂tv + v · ∇v = −∇W + Pr∇
2
v

+PrRa
[

(T − T̄ ) − ψ(C − C̄)
]

ez (2)

∂tT + v · ∇T = ∇
2T, (3)

∂tC + v · ∇C = L(∇2C + ∇
2T ). (4)

Here we have scaled length by the layer thickness h, time
by the characteristic heat diffusion time h2/κ, tempera-
ture by ∆T , and the concentration by (DT /Dc)∆T . The
scale for the pressure W is κ2ρ/h2. Thereby κ, DC , DT

are the coefficients for heat, concentration and thermo-
diffusion, respectively. The quantities T̄ and C̄ are ref-
erence values defined as the mean values for tempera-
ture and concentration. Apart from the Prandtl num-
ber Pr = ν/κ and the Lewis number L = Dc/κ there
is a third dimensionless material parameter, the separa-
tion ratio ψ = DTβc/(DcβT ), where βT = −(1/ρ)∂ρ/∂T

gT(z), v(z), c(z) 
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FIG. 1: Sketch of the setup. For details see text.

and βc = (1/ρ)∂ρ/∂c are the thermal and solutal ex-
pansion coefficient. The dimensionless Rayleigh number
Ra = βT gh

3∆T/(κν) is the control parameter measur-
ing the strength of the thermal drive. In Eq. (4) we have
suppressed the Dufour-effect (heat current driven by a
concentration gradient) as it is significant in gas mix-
tures, only.

The equations of motion are to be completed by bound-
ary conditions: Taking the bounding plates to be no-slip
for the velocity, highly heat conducting, and impermeable
for concentration currents we have at the upper (z = 1/2)
and the lower (z = −1/2) plates

v|z=±1/2 = 0, (5)

T |z=±1/2 = T̄ ∓ 1

2
, (6)

(∂zC + ∂zT )|z=±1/2 = 0. (7)

Eq. (7) guarantees that a concentration current cannot
penetrate the plates. Owing to the Soret effect the ap-
plied temperature difference enforces a finite concentra-
tion gradient at the boundaries. The above equations (1)-
(4) together with the boundary conditions (5)-(7) com-
plete the system of hydrodynamic equations for the vari-
ables v, T, C.

III. LINEAR STABILITY ANALYSIS

A. Basic state and time scale separation

It is easy to show that the above boundary-value prob-
lem has a simple stationary solution, the so called con-
ductive state. It is represented by linear temperature and
concentration distributions

v = 0, (8)

Tcond(z) = T̄ − z, (9)

Ccond = C̄ + z. (10)

In order to check for the stability of this solution one usu-
ally proceeds by introducing small perturbations around
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the conductive state and following their time evolution
as governed by the linearized equations of motion. How-
ever, owing to the smallness of the Lewis number, the
time necessary to establish Ccond exceeds the equilibra-
tion time for Tcond by a factor 1/L. Take for instance
[16] a layer with a depth of h = 3 mm. Then Tcond is
adopted after a few thermal diffusion times ttd ≡ h2/κ
(= 1 in dimensionless units). With the heat diffusivity of
water, κ = 1.5×10−7 m2/s, this period amounts to about
one minute. On the other hand, for L = 10−4 the equi-
libration of the linear concentration profile Ccond takes
h2/(κL), i.e. almost a week! Clearly, this tops any rea-
sonable time scale at which convection experiments are
carried out. Accordingly, a linear stability analysis, suit-
able for a comparison with experiments, has to account
for the creeping solutal diffusivity. This can be accom-
plished by taking the slowly establishing conducting con-
centration profile C0(z, t) as the basic state rather than
the fully developed profile Ccond. For times larger than
the evolution time of the temperature profile, t > ttd,
C0(z, t) obeys the linear partial differential equation

∂tC0 = L∂2
zC0 (11)

with the inhomogeneous boundary condition

∂zC0|z=±1/2 = 1. (12)

resulting from eq.(9). On the creeping time scale of the
evolution of C0(z, t), τ ≡ Lt, the validity condition of
eqs. (11,12) reads τ ≥ L ' 10−4.

Eqs. (11,12) reflect the evolution of the upcoming con-
ductive concentration profile Ccond. However, as outlined
at length above, the system has not enough time to reach
this state. At best the Soret driven concentration cur-
rent is able to pile up thin concentration boundary layers
along the plates, the depth δ of which remains small in
comparison to the distance between the plates (δ � 1).
This is somewhat difficult to see from the exact solution
of (11,12)

C0(z, t) = z +
4

π

∞
∑

n=0

(−1)n+1

(2n+ 1)2
exp

(

−(2n+ 1)2π2τ
)

×

sin(2n+ 1)πz (13)

since for the small τ ’s we are interested here, the sum
converges extremely slowly. A better feeling of C0 can be
obtained by the solution of the somewhat simpler prob-
lem where the boundary conditions (12) are replaced by
∂zC0|z=−1/2 = 1 and ∂zC0|z�−1/2 ≈ 0 [16]. The solution
of this problem is

∂zC
(approx)
0 (z, t) = 1 − erf

(

1/2 + z

2
√
τ

)

, (14)

which for τ & 10−4 describes the development of the
boundary layer close to z = −1/2 very well. (erf(x) de-
notes the error function [21].) As long as each boundary
layer does not feel the presence of the opposite one, the

superposition of (14) with the corresponding solution at
z = 1/2 gives the realistic picture of C0. We will also cor-
roborate this scenario within the nonlinear calculations
below.

B. Linear deviations

To probe the stability of the ground state, deviations
are added whose time evolution is investigated. To that
end we impose [22]

C(r, t) = C0(z, t) + c(r, t), (15)

T (r, t) = Tcond(z) + θ(r, t), (16)

and the velocity field v(r, t). Linearizing the equations
of motion for the convective perturbations v, θ, c yields

∂t∇
2w = PrRa(∂2

x + ∂2
y)[θ − ψc] + Pr∇4w, (17)

∂tθ − w = ∇
2θ, (18)

∂tc+ w∂zC0 = L[∇2c+ ∇
2θ]. (19)

Here we have taken twice the curl of the Navier-Stokes
equation to derive the equation for the vertical compo-
nent w of the velocity field.

The boundary conditions read as

w|z=±1/2 = 0, (20)

∂zw|z=±1/2 = 0, (21)

θ|z=±1/2 = 0, (22)

(∂zc+ ∂zθ)|z=±1/2 = 0. (23)

Eqs. (17-19) together with (20-23) are to be solved for a
given C0.

Since the temporal evolution of the boundary layers
takes place on the stretched time scale 1/L we consider
the profile C0(z, τ) as being stationary within the period
at which convective perturbations grow up to saturation,
i.e. C0(z, t) ' C0(z). The self-consistency of this as-
sumption has to be checked at the end of the calcula-
tions. With this approximation of a stationary C0 all
coefficients in Eqs. (17-19) are time-independent and so-
lutions in the form θ, c, w ∝ eλt cos kx can be adopted.
This leads to

λ
(

∂2
z − k2

)

w = −PrRa k2(θ − ψc)

+Pr
(

∂2
z − k2

)2
w, (24)

λθ − w =
(

∂2
z − k2

)

θ, (25)

λc+ w∂zC0 = L
(

∂2
z − k2

)

(c+ θ). (26)

Note that the above ordinary differential system is not
autonomous since C0(z) entails an explicit z-dependence.
Only in the limiting cases where either ∂zC0 = 1 (fully
developed conductive concentration profile, i.e., C0 =
Ccond) or ∂zC0 = 0 (uniform concentration distribution),
Eqs. (24-26) adopt an autonomous form. These two sit-
uations will be discussed in turn below.
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C. Threshold for a fully developed conductive

concentration profile

Although the fully developed conductive profile is of
minor significance for the present investigation let us
briefly review [2, 3] the situation when C0 = Ccond or
equivalently ∂zC0 = 1 is the ground state. To iden-
tify the threshold of the stationary instability we impose
λ = 0. We obtain (∂2

z − k2)θ = −w from Eq.(25) and
(∂2

z − k2)c ' w/L from (26), since L� 1. This allows to
neglect thermal vs. solutal buoyancy forces in Eq. (24)
leading to

L
(

∂2
z − k2

)3
c− ψRak2 c = 0 (27)

with the boundary conditions

∂zc|z=±1/2 ≈ 0 (28)

(∂2
z − k2)c|z=±1/2 = ∂z(∂

2
z − k2)c|z=±1/2 = 0. (29)

The solution of this eigenvalue problem is known [23]
to provide a stationary instability with a critical wave
number k = kc = 0 at

Ra∞c = 720
L

ψ
. (30)

Taking L = 10−4 and ψ = 10 we obtain Ra∞c ' 10−2,
indicating that the threshold of Soret driven convection
is smaller by a factor of 105 as compared to the pure fluid
threshold Ra0

c ' 1708. Note however, that in order to
experimentally verify this drastic onset reduction one has
to wait for about a week after any temperature step be-
fore the linear conductive concentration profile has fully
equilibrated. This case will not be pursued further.

D. Threshold at a uniform concentration

distribution

We now turn to the opposite limit when the concentra-
tion boundary layer had no time to develop, thus C0 = C̄
or equivalently ∂zC0 = 0. Imposing again zero growth
rate λ = 0 we obtain from Eqs. (26,23) the equality c = θ.
Substituting this into (24) yields

(∂2
z − k2)2w −Rak2(1 + ψ) θ = 0, (31)

(∂2
z − k2)θ + w = 0. (32)

In combination with the boundary conditions (20,22) we
recover the known boundary value problem for pure-fluid
thermo-gravitational convection, however with an extra
prefactor (1+ψ) in front of the Rayleigh number. Taking
this renormalization into account and following Chan-
drasekhar’s solution [24] yields an exchange of stability
at

Rac =
1

1 + ψ
Ra0

c (33)

with a critical wave number kc = 3.117 and Ra0
c ' 1708.

The appreciable value of the separation ratio ψ implies
a significant onset reduction. Strictly speaking, the de-
termination of Rac by imposing zero growth rate λ = 0
is void, since the creeping diffusion of C0 can only be
disregarded for times t � L−1. In other words, the ex-
ponential amplification of the convective perturbation c
has to proceed much faster than the diffusive evolution of
C0. This is always true for Rayleigh numbers sufficiently
off from Rac, i.e., when λ is non-zero with |λ(Ra)| � L.
It is this inequality which guarantees the validity of the
time scale separation. And it is also the experimentally
relevant case because extreme waiting times are circum-
vented. This situation will be focused on in the following.

E. Linear growth rate

The preceding discussion reveals that a linear stabil-
ity theory, suitable to compare with a convection exper-
iment, has to rely on the growth rates of the convective
perturbations rather than the threshold value. To that
end we assume that the spatial profiles of velocity and
temperature are only slightly disturbed by the concen-
tration dynamics. Accordingly we represent their depen-
dencies in terms of simple trigonometric test functions in
the form

w(x, z, t) = A(t) cos (kx) cos2(πz), (34)

θ(x, z, t) = B(t) cos (kx) cos(πz). (35)

In contrast, for the convective concentration field c we
allow for a steep boundary layer behavior, which we ac-
count for by the following multi-mode expansion

c(x, z, t) = −θ(x, z, t) + cos(kx)

n=∞
∑

n=0

bn(t) cos(2πnz).

(36)
Again we assume that the conductive concentration
boundary layers had not enough time to pile up thus
imposing ∂zC0 = 0. It is easy to see that (36) satisfies
the boundary conditions (7). Furthermore it conserves
the mirror symmetry of c with respect to the mid-plane
between the boundaries (z → −z). Substituting (36) into
(17-19), and projecting the equations with the respective
Galerkin modes reveals that only the first two concen-
tration modes b0 and b1 enter the evolution equation for
A. The remaining concentration modes bi with i ≥ 2 are
decoupled. Summarizing the Galerkin model for the rel-
evant modes A(t), B(t), b0(t), b1(t) leads to the following
system of equations
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3k2 + 4π2

8Pr
λA+

(

3k4

8
+ k2π2 + 2π4

)

A

−4k2

3π
Ra (1 + ψ)B +

ψk2

4
Ra (2b0 + b1) = 0 (37)

4

3π
λB +

4

3π
(π2 + k2)B − 3

8
A = 0 (38)

λb0 + Lk2 b0 +
2(π2 + k2)

π
B − 9

16
A = 0 (39)

λb1 + L(k2 + 4π2) b1 +
4

3π
(π2 + k2)B − 3

8
A = 0 (40)

To check the reliability of the above 4-mode approxi-
mation we solved the linearized boundary value problem
of equations (17-23) exactly by means of the numerical
method outlined in Ref. [25]. Comparing the results for
the growth rate λ we found that the Galerkin technique
is accurate by about 10%.

For λ � L and ψ � 1 (with the approximation k ≈ π)
an analytical expression for λ as an implicit function of
the material and the control parameters (ψ, L, Pr, and
Ra, respectively) can be obtained from Eqs. (37-40)

3RaPr(λ+ 2π2Lψ) = λ(2π2 + λ)(27π2Pr + 7λ). (41)
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FIG. 2: The linear growth rate λ (ε) for convective per-
turbations as a function of the reduced Rayleigh number
ε = Ra/Ra0

c − 1. Here Ra0

c is the threshold for the onset
of convection in a single-component fluid. Within the present
Galerkin approximation Ra0

c = 1752

Without these approximations numerical results in
Fig. 2 illustrate the dependence of λ on the reduced
Rayleigh number ε = Ra/Ra0

c − 1 for different values
of the separation ratio. The dashed line bifurcating at
ε = 0 indicates the reference case of single-fluid convec-
tion. Form Eq. (41) and Fig. 2 it becomes clear that
λ depends for large ψ on the product ψL rather than
L alone. Thus decreasing the concentration diffusivity L
makes the curve λ(ε) approach to the pure fluid case. On

the other hand, increasing the solutal buoyancy force by
rising ψ has the opposite effect. Assuming that the ex-
perimental observation time is long enough to detect an
unstable convective mode with a growth rate λ ' 0.1 (i.e.
waiting time of about 10 heat diffusions times, which in
a layer of thickness h = 3 mm corresponds to about 10
minutes, and which is still much shorter than L−1, the
time scale of C0), then convective motion is detectable at
Rayleigh numbers 10-50% below Ra0

c depending on the
value ψ.

To corroborate the validity of the time scale separation
we have also solved the linear problem, where the approx-
imative uniform concentration distribution ∂zC0 = 0 was
replaced by the true profile as given by eq.(14) at t = 10.
Re-evaluating the growth rate yields a value for λ which
differs from the previous one by less than 10%.

Regarding typical ψ-values in the range ψ ' 10-100,
Eq. (33) indicates that the convective onset threshold
Rac for a homogeneously intermixed ferrofluid experi-
ences a significant reduction relative to the pure-fluid
value Ra0

c (cf. Sec. III D). This result appears some-
what counter-intuitive: As long as the initial concentra-
tion profile is approximately uniform, one might expect
convection to behave as in single-component liquids [16].
But it turns out here that this argument is not gener-
ally applicable: Provided the applied Rayleigh number is
not too far below the reference value Ra0

c , Fig.2 reveals
that the conductive profileC0(z, τ) and the convective one
c(r, t) evolve on strongly distinct time scales. While the
former always proceeds on the creeping time scale 1/L,
the quantity c(r, t) grows up much more rapidly propor-
tional to eλt, in unison with θ and w. Then, owing to the
pronounced ψ-value, solutal buoyancy forces significantly
contribute to the destabilization of the conductive state.

Our observations shed new light on a state of
relaxation-oscillation convection predicted recently by
Shliomis and Souhar [16]. In that paper it was argued
that after a sudden application of Ra < Ra0

c to a fer-
rofluid with an initial uniform concentration distribution,
a concentration boundary layer along the plates piles up
slowly, making the instantaneous convective threshold
Rac(t) gradually sink below the applied Ra-value. Then
the increasing convective motion mixes up the ferrofluid,
sweeping out the concentration boundary layers. With
the concentration profile being re-homogenized, the fer-
rofluid was argued to behave like a single-component liq-
uid, returning to the conductive state since the applied
Rayleigh number is smaller than Ra0

c . Thereafter this
relaxation-oscillation cycle can start again. The present
investigation reveals that such a cycle cannot work: This
is because it was proven that convective perturbations
in a homogeneously mixed ferrofluid do not decay at
Rac < Ra < Ra0

c . Rather they may experience a consid-
erable positive growth rate (see Fig. 2) even at Rayleigh
numbers 50% below Ra0

c , say. We conclude that there
is no mechanism, which drives the system back to the
conductive state. Once initiated, convection will persist
(rather than oscillate) and saturate in a stationary non-
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linear state. This will be shown in the following section.

IV. NONLINEAR BEHAVIOR

The preceding linear analysis reveals that for Rayleigh
numbers well below Ra0

c, convective fluctuations are ex-
ponentially amplified on a time scale, which is experimen-
tally relevant. It can therefore be expected that these
fluctuations saturate quickly in a nonlinear convective
pattern. To work out whether this final state is station-
ary or oscillatory we solved the nonlinear problem by use
of numerical methods. To that end we make the follow-
ing ansatz of a 2-dimensional pattern, which is laterally
(in x-direction) periodic with wave number k

C (x, z, t) = C0 (z, t) + c (x, z, t)

= C0(z, t) + c1(z, t) cos kx, (42)

T (x, z, t) = −z + θ(x, z, t)

= θ0 (z, t) + θ1 (z, t) cos kx, (43)

vx(x, z, t) = −(1/k)∂zw1(z, t) sin kx, (44)

vz(x, z, t) = w1(z, t) cos kx. (45)

with incompressibility already built in. Substituting
(42)-(45) into the nonlinear equations of motion (2-4)
and sorting for different lateral dependences yields the
following system of equations

1

Pr
∂t

(

∂2
z − k2

)

w1 =
(

D2 − k2
)2
w1

−Ra k2 (θ1 − ψc1) , (46)

∂tC0 +
1

2
∂z (w1c1) = L∂2

z (C0 + θ0) , (47)

∂tc1 + w1∂zC0 = L
(

∂2
z − k2

)

(c1 + θ1) , (48)

∂t θ0 +
1

2
∂z (w1θ1) = ∂2

zθ0, (49)

∂t θ1 − w1 + w1∂zθ0 =
(

∂2
z − k2

)

θ1, (50)

with the boundary conditions

∂z (c1 + θ1)|z=±1/2 = 0, (51)

∂z (C0 + θ0)|z=±1/2 = 1, (52)

θ1|z=±1/2 = θ0|z=±1/2 = 0, (53)

w1|z=±1/2 = ∂zw1|z=±1/2 = 0. (54)

To solve this boundary-value problem we adopt vertical
profiles w1, θ0, θ1, C0, and c1 in the form

w1(z, t) = A (t) cos2 (πz) , (55)

θ1(z, t) = B (t) cosπz, (56)

θ0(z, t) = F (t) sin 2πz, (57)

C0 (z, t) = z − θ0(z, t) +

n=N
∑

n=0

an (t) sin (2n+ 1)πz, (58)

c1 (z, t) = −θ1(z, t) +

n=N
∑

n=0

bn (t) cos 2nπz, (59)
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FIG. 3: The time dependence of the velocity amplitude A(t)
for positive and negative values of ε = Ra/Ra0

c−1 in terms of
the thermal diffusion time ttd (for Pr = 7 and L = 7× 10−5).
The dashed gray line corresponds to single-component fluid
(ψ = 0) ε = 0.056.

which satisfy the boundary conditions (51-54) identically.
The above equations describe two-dimensional convec-
tion in the form of parallel rolls along the y axis in an
infinite slab of thickness 1. We point out that for ψ = 0,
the concentration fields decouple from temperature and
velocity. This reduces Eqs. (55-57) to the 3-mode model
introduced by Lorenz [26] to mimic the dynamics of con-
vective rolls in single-component Rayleigh-Bénard con-
vection. At non-zero ψ, convection is modified by the
concentration field but we can adopt the above few-
mode expansions for temperature and velocity without
modifications, because the diffusivities for heat and mo-
mentum are large enough to prevent the appearance of
strong gradients. By way of contrast, owing to the small
Lewis number, the concentration field does build up steep
boundary layers, which we account for by multi-mode
Fourier series as given in (58,59). For C0 the modes are
antisymmetric in z and resemble the solution (13), while
for c1 symmetric modes are appropriate. The number N
of contributing modes was taken large enough to ensure
that the results are insensitive against a further increase
of N . For the parameter values considered here, N = 20
turned out to be sufficient.

The equations for the mode amplitudes A,B, F, an, bn
have been solved by a Runge-Kutta integration. The
wave number k, usually taken to be the mode of maxi-
mum linear growth rate λ(k,Ra) varies between 3 and 3.5
within the investigated Rayleigh number regime. How-
ever, since the final predictions of our model turned
out not to depend sensitively on the k-value chosen we
adopted in all of our simulations k = π. All runs were
started form an initial configuration characterized by a
undisturbed linear temperature profile T = Tcond, a uni-
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FIG. 4: The saturation amplitude Asat = A(t → ∞) as a
function ε = Ra/Ra0

c−1 (parameters as in Fig.3). The dashed
gray line corresponds to a single-component fluid (ψ = 0).
Dotted lines show the result of a 7-mode Galerkin approxi-
mation as given by Eq.(4.1b) in Ref. [22]

form concentration distribution ∂zC0 = c1 = 0, and small
random velocity fluctuations. The time evolution of the
velocity amplitude A (t) as obtained from a typical sim-
ulation run is presented in Fig. 3 for two different values
of the Rayleigh number (ε = Ra/Ra0

c − 1 = ±5.7%)
on either side of the pure-fluid reference threshold Ra0

c .
The dashed line in Figs. 3 denotes pure-fluid reference
case ψ = 0. In all of our runs the convective motion
was found to settle in a state of stationary convection. A
relaxation oscillation behavior as predicted in Ref. [16]
could not be observed. The times necessary to reach the
saturation values are several thermal diffusion times and
increase with decreasing ε. However, they are still much
shorter than the evolution time of the creeping concentra-
tion profile, thus corroborating our assumption ∂zC0 = 0
in the preceding section. The overshoot in Fig. 3 be-
fore the plateau values are reached is not a numerical
artifact, but it may be related to the small number of
lateral modes we have taken into account. This can be
expected, since additional modes with negative growth
rate, smooth out the relaxation into the saturated state.

Fig. 4 shows the corresponding bifurcation diagram
with the dependence of the saturation amplitude on the
reduced Rayleigh number. At ε > 0 the amplitude sat-
urates at a value, which does not significantly deviate
from the single-component case. On the other hand, the
influence of the concentration field is most pronounced
for Ra ≤ Ra0

c . This is a consequence of the competi-
tive interaction between the small Lewis number and the
large separation ratio. Decreasing L makes the curve in
Fig. 4 approach to the dashed reference line, whereas ris-
ing ψ has the opposite effect as it amplifies the solutal
buoyancy forces. For the sake of comparison the dot-
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FIG. 5: (a) The conductive concentration profile C0(z) =
C0(z, t → ∞) in the fully developed saturated state for ε =
−0.058 (parameters Pr = 7, L = 7 × 10−5, and ψ = 10).
(b) same as a) for the convective concentration field c1(z) =
c1(z, t→ ∞).

ted lines in Fig. 4 show an analytical approximation for
the saturated velocity amplitude based on a seven mode
Galerkin approximation recently introduced by Hollinger
et al. (Eq.(4.1b) in Ref.[22]).

Unlike a single-component system, where convective
perturbations decay for negative ε, the ferrofluid exhibits
a pronounced positive linear growth rate (c.f. Fig. 2).
When measuring a bifurcation diagram such as Fig. 4,
one might conclude that the bifurcation is imperfect. In-
deed, a slight imperfect behavior was observed in the ex-
periments of Bigazzi et al. [15] and of Schwab et al. [14],
who recorded the convective heat transport as a function
of Ra. But we learn here that this phenomenon is to be
attributed to the concentration dynamics: As outlined in
Sec.3, the very onset for convection is located at a much
smaller Rayleigh number, Rac, but at Rayleigh numbers
slightly larger the linear growth rate of disturbances re-
mains extremely small. Thus, trying to detect Rac in
such an experiment would be hopeless as it requires ex-
tremely long observation times. Experiments on ferroflu-
ids have been reported recently [27] that corroborate the
behavior shown in Fig. 4.

In contrast, at ε around ±10-20% the time necessary
to wait for the equilibration of the nonlinear convective
state amounts to only a few thermal diffusion times (see
Fig. 3). This statement, which holds in particular also for
the concentration field, demonstrates that the growth of
convective perturbations is a fast process on the (creep-
ing) time scale 1/L of solutal diffusion. On the first
view this might appear counterintuitive, but it can be
seen from Fig. 5 that the final concentration distribu-
tion differs from the initial homogeneous profile only in
thin boundary layers. Consequently, time consuming re-
distribution processes of the concentration field are not
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necessary for building up the solutal saturation profiles.
This keeps the equilibration time small and no further
evolution on the slow diffusion timescale occurs after the
system reaches the state given on the Fig. 5.

V. CONCLUSION

Thermo-convection of binary mixtures with a weak
concentration diffusivity and a large separation number
has been investigated theoretically. By considering the
classical Rayleigh Bénard setup it is shown that both
the linear as well as the nonlinear convective behavior
is significantly altered by the concentration field as com-
pared to single-component systems. Starting from an ini-
tial motionless configuration with a uniform concentra-
tion distribution, convective perturbations are found to
grow even at Rayleigh numbers well below the threshold
Ra0

c of pure-fluid convection. It turned out that the ac-

tual critical Rayleigh number Rac is drastically smaller,
but experimentally inaccessible due to the extremely slow
growth of convection patterns for Ra & Rac, requir-
ing extremely large observation times. On the other
hand, operating the ferrofluid convection experiment at

Rayleigh numbers Rac < Ra
<∼ Ra0

c, reveals considerable
positive growth rates, which lead to a saturated nonlin-
ear state almost as fast as pure-fluid convection does at
Ra > Ra0

c . This result is corroborated by earlier con-
vection experiments. It does not comply with a recent
prediction of convective self-oscillations conjectured from
the interplay between short thermal and slow solutal dif-
fusion time scales.
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[22] S. Hollinger, M. Lücke, H.W. Müller, Phys. Rev. E 57,
4250 (1998).

[23] D.T.J. Hurle, E. Jackeman, E. R. Pike, Proc. R. Soc.
Lond. A 296 (1967) 469.

[24] S. Chandrasekhar, Hydrodynamic and hydromagnetic
stability, (Clarendon Press, Oxford) 1961.

[25] N. Li, J.O. Murphy, J.M. Steiner, Z. Angew. Math.
Mech. 75 (1995) 3.

[26] E. N. Lorenz, J. Atmos. Sci. 20 (1963) 130.
[27] S. Odenbach, private communication


