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Thermal convection in colloidal suspensions with negative separation ratio
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Thermal convection in colloidal suspensions of nanosized particles is investigated. Representative
examples for such materials are ferrofluids, but since we do not imply any external magnetic field,
the description applies to nonmagnetic suspensions as well. With the grain size being large on
molecular length scales, the particle mobility is extremely small, allowing to disregard the concen-
tration dynamics in most cases. However, due to the pronounced Soret effect of these materials in
combination with a considerable solutal expansion, this cannot be done when thermal convection
is under consideration. Here we consider the case when the separation ratio (the Soret coefficient)
is negative. This case reveals a much richer variety of phenomena than that of positive separation
ratio. In particular, for heating from below we find a linear oscillatory instability, whose amplitude,
however, relaxes to zero on the long turn and is, thus transient only and, at higher Rayleigh numbers,
a finite amplitude stationary instability coexistent with the linearly stable convection-free state. By
heating from above short-length-scale convective structures occur, whose wavelength depends on

the Rayleigh number.

PACS numbers: 47.20.-k, 44.27.+¢g

I. INTRODUCTION

Thermal convection in binary mixtures has attracted
much research activity in the past (see [1-3] for a review).
In comparison to the pure fluid case, the dynamics and
the bifurcation scenarios are more complicated due to
the extra degree of freedom associated with the concen-
tration field. Thereby solutal currents are not only driven
by concentration gradients, they occur also in response
to temperature inhomogeneities. This is denoted as the
thermodiffusive or Soret effect. Its influence on the con-
vective buoyancy force is quantified by the dimensionless
separation ratio 1.

When the thermal convection problem is considered
in colloidal suspensions rather than in molecular binary
mixtures, one has to take into account the very distinct
time scales involved. The diffusion of colloidal particles
is much slower than a typical molecular diffusion and the
diffusion time is about two or three orders of magnitude
smaller. This is reflected in the value of the Lewis num-
ber L, which in colloidal suspensions is L ~ 1074 — 1075
compared to L ~ 0.1 — 0.01 in molecular binary mix-
tures. In addition, the two constituents of a colloidal
suspension (the solvent and the colloidal particles) have
very different densities. For example, for ferrofluids with
colloidal particles made of magnetite and dissolved in wa-
ter the ratio of the two densities can be as large as ~ 5
[4]. As a result, there is a very high separation ratio in
these materials. The combination of these two features
(high ¢ and low L) makes the consideration of the con-
vection problem in ferrofluids different from molecular
binary mixtures [5—7]. In particular, the experimentally
relevant initial state of the concentration field is different
from the linear profile usually considered.

In the following we phrase our discussion in terms of

ferrofluids, since they are probably the most important
application for our investigations and there are many
measurements of material parameters available for fer-
rofluids [8-12]. In principle, this description is valid for
nonmagnetic suspensions, too, as long as no external
magnetic field is involved.

In two recent publications [5, 6] we have discussed the
thermal instability in ferrofluids with positive separation
ratio, without and with an external magnetic field, re-
spectively. However, the separation ratio of ferrofluids
can be positive or negative [8] depending on the nature of
the system. Usually, ferrofluids with steric stabilization
possess positive separation ratio 1, while for ferrofluids
with electrostatic stabilization 1 is expected to be nega-
tive. Examples for the latter are maghemite and cobalt
ferrite particles dissolved in water and stabilized by HT
or citrate ions [8]. The value of 1) depends linearly on the
concentration and can reach absolute values comparable
to those of stericly stabilized similar ferrofluids [8], i.e.,
[t)] ~ 100 — 1000. The present paper is devoted to the
study of thermal convection in ferrofluids with negative
separation ratio without external magnetic fields.

The paper is organized as follows. In the following sec-
tion the problem is set up along with the governing equa-
tions and boundary conditions. In Sec. ITI we present the
linear stability analysis for two different cases — heating
from below and from above — and in Sec. IV the non-
linear behavior of the system is considered, where we re-
strict ourselves, however, to 2-dimensional roll patterns,
for simplicity. A summary concludes the exposition.



II. SETTING UP THE PROBLEM

Let us consider a laterally infinite horizontal layer of
an incompressible ferrofluid (density p, kinematic viscos-
ity v) bounded by two rigid impermeable plates. The
setup is heated from below or above with a temperature
difference AT between the plates. In the present paper
we do not consider magnetic field related effects, thus
the evolution equations for non-magnetic binary mixtures
can be adopted. Taking C(r,t) as the concentration of
the solid constituent of the suspension, the dimension-
less equations for the Eulerian fields of velocity v(r,t),
temperature T'(r,t), and C(r,t) read in Boussinesq ap-
proximation [13-15] for negative

V.v =0, (1)

v +v-Vv = —VW + PrvV3v
+PrRa[(T—T)+ [¢|(C-C)le. (2)
OT+v-VT = VT, (3)
2C+v-VC = L(V?C+ V). (4)

Here we have scaled length by the layer thickness h, time
by the characteristic heat diffusion time h?/k, tempera-
ture by AT, and the concentration by (Dr/D.)AT. The
scale for the pressure W is x2p/h%. Thereby , D¢, Dr
are the coefficients for heat, concentration and thermod-
iffusion, respectively. The quantities T and C are ref-
erence values defined as the mean values for tempera-
ture and concentration. Apart from the Prandtl num-
ber Pr = v/k and the Lewis number L = D./k there
is a third dimensionless material parameter, the separa-
tion ratio ¥ = Dpf./(D.Br), where By = —(1/p)0p/0T
and 3. = (1/p)0p/dc are the thermal and solutal expan-
sion coefficient, respectively. The dimensionless Rayleigh
number Ra = Brgh®AT/(kv) is the control parameter
measuring the strength of the thermal drive. In Eq. (3)
we have suppressed the Dufour effect a (heat current
driven by a concentration gradient), since it is significant
in gas mixtures only.

In addition to the equations of motion boundary con-
ditions are needed. Taking the bounding plates to be
no-slip for the velocity, highly heat conducting, and im-
permeable for concentration currents we have at the up-
per (z =1/2) and the lower (z = —1/2) plates

V|mt1/2 = 0, (5)

- 1
T|z:i1/2 =TF 2 (6)
(azc+azT)|z::t1/2 = 0. (7)

Equation (7) guarantees that a concentration current
cannot penetrate the plates. Owing to the Soret effect
the applied temperature difference enforces a finite con-
centration gradient at the boundaries. Equations (1)—(4)
together with the boundary conditions (5)—(7) complete
the system of hydrodynamic equations for the variables
v,T,C.

There are two essentially different regimes — heating
from below (Ra > 0) and heating from above (Ra < 0).
In the first case we have an instability due to the temper-
ature buoyancy force while the concentration buoyancy
stabilizes the system. This can be considered in some
sense as an extension of the one component liquid con-
vection with some additional effects due to the presence
of the concentration buoyancy. In the second case the
driving force for the instability is the buoyancy force due
to the concentration field, while the thermal buoyancy is
stabilizing. This case has no analog in a one component
system.

In the following sections on linear and nonlinear stabil-
ity analysis, we first present the relevant equations valid
for both cases (heating from below or from above) as far
as possible, but then discuss the results for the different
regimes, separately.

IITI. LINEAR STABILITY ANALYSIS
A. Basic state and time scale separation

As shown in [5], the appropriate state to start the in-
vestigation of the convection instability in ferrofluids is
a state where the temperature profile is fully developed
while concentration just starts to build up the layers near
the boundaries. This is due to the very different time
scales of the concentration diffusion and heat conduction.
So the initial state is given by

v = 0, (8)
Tcond(z) =T-— zZ, (9)
for the velocity and the temperature field. For the con-

centration field we have a slowly developing profile given
by the solution of the diffusion equation

9,Co = L?Cy (10)

with the inhomogeneous boundary condition

(11)

according to Eqs.(7) and (9). On the creeping time scale
of the evolution of Cy(z,t), 7 = Lt, Egs. (10) and (11)
are valid for 7 > L ~ 10~%. An exact solution of Egs.(10)
and (11) can be found, for example, in [5].

8zcto|z=i1/2 =1

B. Linear deviations

To probe the stability of the ground state, deviations
are added whose time evolution is investigated. To that
end we impose [16]

C(r,t) = Co(z,t)+ c(r,t),
T(r,t) = Teona(z) +0(r,t),



and a nonzero velocity field v(r,t), whose z component
is w(r,t). Linearizing the equations of motion for the

convective perturbations of the form 6, ¢, w o e cos kz
yields
AO2—K)w = —PrRak?+[¢|c)
+Pr (0% — k)% w, (14)
M —w = (92 -k%)6, (15)
Ae+wd,Co = L (07 —k?) (c+0). (16)

The boundary conditions read

w‘z::l:l/Q = 0, (17)
azw‘z:il/Q = 0, (18)
Ol=+1/2 = 0, (19)

(0:¢+ 0:0)].=+1/2 = 0. (20)

Note that this system of ordinary differential equations is
not autonomous, since Cy(z, t) involves an explicit z- and
time dependence. But, as it is shown in [5], one can take
Cy = const. or 9,Cy = 0 (uniform concentration distribu-
tion) for a simplified analytical treatment. However, the
discussion in [5] also reveals that a linear stability the-
ory, suitable to compare with a convection experiment,
has to be based on the growth rates of the convective
perturbations rather than on the threshold value for the
temperature gradient.

C. Linear growth rate for the case Ra >0

For the case Ra > 0 we assume that the spatial profiles
of the velocity and the temperature are only slightly dis-
turbed by the concentration dynamics. Accordingly, we
represent their dependencies in terms of simple trigono-
metric test functions of a form that automatically fulfills
the boundary conditions (17)—(19)

w(z,z,t) = A(t)cos (kx) cos?(rz), (21)
O(x,z,t) = B(t)cos (kx)cos(mz). (22)

In contrast, for the convective concentration field ¢ we
allow for a steep boundary layer behavior, which we ac-
count for by the following multimode expansion:

n=oo
c(x, z,t) = =0(x, z,t) + cos(kx) Z by, (t) cos(2mnz).
n=0
(23)
For A > L'/ and |¢| > 1 and with the approximation
~ 7 an analytical expression for A as an implicit func-
tion of the control (Ra) and the material parameters (¢,
L, Pr) is obtained from Eqs. (14)—(16,21)—(23) [5]

3Ra Pr(\ — 27 L|y|) = A(272 + \) (2772 Pr +7\). (24)
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FIG. 1: The linear growth rate Re (A (¢)) for convective per-
turbations as a function of the reduced Rayleigh number
€ = Ra/Rag — 1. Here Ra® is the threshold for the onset
of convection in a single-component fluid as shown by the
dashed straight line (within the present Galerkin approxima-
tion Ral = 1752). Full lines indicate growth rates of unstable
(or most unstable) modes. The parameters are p = —10,
Pr=7and L=7x10""

Im(4)

FIG. 2: The frequency of the oscillations I'm (A (¢)) for con-
vective perturbations as a function of the reduced Rayleigh
number € = Ra/Rag — 1; parameters as in Fig. 1.

Without these approximations results are obtained nu-
merically and shown in Fig. 1 and Fig. 2 illustrating the
dependence of Re (A) and I'm () on the reduced Rayleigh
number € = Ra/Ral—1 for the separation ratio 1) = —10.
The dashed straight line bifurcating at ¢ = 0 indicates
the reference case of a single-fluid convection.

For the case of a negative separation ratio the bifurca-
tion takes place at the same point as for the single-fluid
case. But in the present case there is a Hopf bifurcation
at onset. When ¢ is increased the oscillatory frequency
decreases and at the point € ~ 0.05 the (linear) oscilla-
tory instability becomes a stationary one. Above that
point there are two bifurcation branches, of which only
the most unstable is relevant, the upper branch (full line)
in Fig.1. If we increase ¢ further, this upper branch ap-
proaches asymptotically the bifurcation line of the single
component liquid case (¢ = 0).



To understand this behavior, it should be noted that
the initial state, whose stability is investigated, is one
with an almost homogenous concentration profile. Since
in the case of negative ¢ the buoyancy force due to the
concentration field is stabilizing, the state with a fully
developed (linear) concentration profile is stable. Taking
into account that the concentration profile develops in
time there is the possibility that the nonconvective state
becomes stable, again. On the other hand, the convective
motion remixes the concentration field, making it almost
homogeneous and, thus, leaves the system unstable. So
the final state depends on the interplay of these two ef-
fects — the concentration field evolution due to the Soret
effect, and the remixing of the concentration field due
to convection. To make a prediction of the final state of
this convection problem, one needs to solve the nonlinear
problem. This is done in Sec. IV.

D. Linear growth rate for the case Ra < 0

Heating the system from above (Ra < 0) while ¢ < 0
one is tempted to use a similar linear stability analysis
as for Ra > 0 and 9 > 0 resulting in a threshold value
[14]

-t
L+ [

with Ral = 1708. Since the (linear) growth rate A of the
most unstable modes is very small near the threshold,
we consider the range Ra ~ —Ra® where convection can
be observed experimentally. However, since || > 1 for
typical ferrofluids, we cannot use the result (24) for A,
because the assumption k. ~ 7 that holds in the case
Ra > 0 does not hold for the case Ra < 0. The critical
wave number depends on Ra sensitively so we need to
find k. for each value of Ra. The asymptotic behavior
for large negative Ra can easily be found (cf. Appendix)
almost independently of the special form of the Galerkin
profiles (21)—(23), with the result

Ra, = Rad®, (25)

k% = a|Ral. (26)

where « is given by

_ w2 \/(lwl +2)?
a = 5 + 1
1 for

-1+ (27)

Q

[] > 1.

To this (asymptotic) wave number belongs the maximum
(asymptotic) linear growth rate

_ Wl-a-1
A = Ly/alRa = — (28)
L
SllVIRal for [p]>1.

Q

These asymptotic relations are valid for \/a|Ra| > 2.

The physical reason why the wavelength of the most
unstable mode becomes shorter and shorter when increas-
ing the Rayleigh number, can be understood as follows.
There are two buoyancy forces in the system — solutal and
thermal buoyancy. The thermal buoyancy is stabilizing,
while the solutal buoyancy is responsible for the instabil-
ity. The diffusion of the temperature field is large com-
pared to the concentration diffusion. Thus, short scale
convective structures smooth out the temperature, while
the concentration field follows the short scale structures
due to the small diffusion. As a consequence, the ther-
mal buoyancy cannot overcome the destabilizing solutal
buoyancy, in particular for small wavelength fluctuations.
If the thermal buoyancy increases, the critical wavelength
has to decrease. Indeed, the tendency to shorter wave-
lengths for larger Rayleigh numbers has been observed in
experiments [17, 18] .

We should note, however, that the linear stability anal-
ysis of a homogeneous concentration profile is relevant
only, if the growth rate of the most unstable mode is
larger than the evolution rate of the concentration pro-
file, e.g. for A\ > L3 [5]. This is easily fulfilled for
positive Ra (at Ra ~ Ral), but in the case Ra < 0 the
growth rate is ~ L\/|Ra| [cf. Eq.(28)] and large enough
to fulfill A > L'/3 for very large Rayleigh numbers, only.
Thus, when the linear stability analysis given above is
relevant, the use of the asymptotic relation (26) is possi-
ble. On the other hand, when the growth rate (or |Ral)
is not large enough, we need to consider the evolution
of the concentration profile Cy and the growth of the
perturbation simultaneously, in which case we are not
able anymore to make the time scale separation and to
describe the linear behavior of our system in terms of
growth rates.

IV. NONLINEAR BEHAVIOR
A. Time evolution and numerical solution

To investigate the nonlinear behavior of the system
we use numerical methods described in [5]. To that end
we make the following ansatz of a 2-dimensional pattern,
which is laterally (in x direction) periodic with wave num-
ber k

C(z,z,t) = Co(z,t) + c1(2,t) cos kz, (29)
T (x,2,t) = 6y (2,1)+ 61 (z,1)coskz, (30)
w(z, z,t) = wi(z,t)coskx. (31)

with the z component of the velocity v.(x,z,t) =
—(1/k)0,w1(z,t) sin kx due to the incompressibility con-
dition. We have chosen this convective roll pattern for
simplicity. Although other patterns (e.g. square pat-
terns) seem to be possible [19], we do not think that the
results are qualitatively different for different convection
patterns. Substituting (29)—(31) into the nonlinear equa-
tions of motion (20—(4) and sorting for different lateral



dependencies yields the following system of equations

%at (@ = k) w = (D= k) w
—Ra k(01 — per),  (32)
8Co + 50 (wier) = LOZ(Co + 6o), (33)
Oer + w10.Co = L (92 —k?) (c1 +61), (34)
0¢ 0y + %32 (wi61) = 926o, (35)
(36)

001 — w1 + w10,00 = (83 — ]4?2) 01,
with the boundary conditions

82 (Cl+01)|z:ﬂ:1/2 =0
9:(Co+00)|,opqpp = 1
‘91|z:i1/2 = 90|z:il/2 =0
0

w1|z:i1/2 = 8Zw1|z:il/2 =

To solve this boundary-value problem we adopt vertical
profiles w1, g, 61, Cy, and c¢; of the form

wy(z,t) = A(t)cos® (12), (41)

01(z,t) = B(t)cosmz, (42)

Oo(z,t) = F (t)sin2nz, (43)
n=N

Co(z,t) = z—00(z,t)+ Z an (t)sin (2n + 1) 7z, (44)
v

c1(z,t) = —01(z,t) + Z by, (t) cos2nmz, (45)

n=0

which satisfy the boundary conditions (37)—(40) identi-
cally. These equations describe a two-dimensional con-
vective flow in the form of parallel rolls along the y
axis in an infinite slab of thickness 1. We point out
that for ¢» = 0 the concentration fields decouple from
the temperature and the velocity pattern. This reduces
Egs. (41)—(43) to the 3-mode model introduced by Lorenz
[20] to model the dynamics of convective rolls in a single-
component Rayleigh-Bénard convection. For a non-zero
1, the convection pattern is modified by the concentra-
tion field, but we can keep the single mode expansions for
temperature and velocity without modifications, because
the diffusivities for heat and momentum are large enough
to prevent the appearance of strong gradients. By way of
contrast, owing to the small Lewis number, the concen-
tration field does build up steep boundary layers, which
we account for by the multimode Fourier series given in
(44) and (45). For Cy the modes are antisymmetric in z
and resemble the solution of the diffusion equation with-
out advection [cf., e.g., Eq.(13) in [5]], while for ¢; sym-
metric modes are appropriate. The number N of con-
tributing modes was taken large enough to ensure the
results to be insensitive against a further increase of N.
For the parameter values considered here, N = 50 turned

out to be sufficient to get the correct time evolution pic-
ture.

The equations for the mode amplitudes A, B, F, a,,, b,
are solved by a Runge-Kutta integration. The wave num-
ber k, usually taken to be the mode of maximum linear
growth rate A(k, Ra), varies between 3 and 3.5 within the
investigated Rayleigh number regime for the case Ra > 0,
while for Ra < 0 we need to find k for each value of Ra,
separately. For Ra > 0 the final predictions of our model
do not depend sensitively on the k£ value chosen and we
adopt in all our simulations k£ = w. All runs are started
from an initial configuration characterized by an undis-
turbed linear temperature profile T = T¢,pq, & uniform
concentration distribution 9,Cy = ¢; = 0, and small ran-
dom velocity fluctuations.

B. The case Ra >0

According to the linear stability analysis (Sec.III C)
there is an oscillatory instability in the interval of 0 <
¢ < 0.05. The typical simulation run for this regime is
shown in Fig. 3. First, there is indeed an oscillating con-
vective flow with an exponential increase of the envelope
amplitude. However, the oscillation frequency increases
with time indicating that the linear stability analysis does
no longer apply. This increase of the frequency is a re-
sult of the growth of the concentration profile that piles
up slowly with time. After some time (~ 40) the enve-
lope amplitude of the oscillating flow pattern starts to
decrease and is eventually damped out completely. This,
again, is a result of the evolving concentration field that
increases the stabilizing solutal buoyancy force to the ex-
tent that the system becomes stable again. The maxi-
mum amplitude that is reached is about one or two orders
of magnitude larger than the initial value of the pertur-
bation, while the time, at which that happens, is fairly
independent of the initial value of the perturbations (at
least if they are small).

For the regime of stationary instability € 2 0.05, the
time evolution of the velocity amplitude A () is presented
in Fig. 4 for two typical simulation runs. There are two
different time evolution behaviors, depending on the ini-
tial value of the amplitude A(0). The oscillating curve (S)
in Fig. 4 corresponds to a small initial value A(0) = 1075,
while for the curve (L) with a large initial A(0) = 1072 a
stationary state with finite amplitude is obtained. If one
waits long enough, the oscillations (S) die out and the
case with no convection is reached again. Thus there are
two stationary states - the quiescent initial state and a
stationary convective one. The bifurcation into the latter
is possible by finite amplitude perturbations only.

The explanation of the presence of these two stationary
states is straightforward. When the concentration profile
is fully developed the state without any convective mo-
tion is stable, since for negative 1 the concentration gra-
dient is stabilizing. When the concentration field is ho-
mogeneous, the convection-free state is unstable. When



FIG. 3: The time dependence of the velocity amplitude A(t)
in the linear oscillatory instability regime (¢ = Ra/Ral —
1 = 0.025) in terms of the thermal diffusion time (¢ = —10,
Pr=7,and L ="7x 107°).
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FIG. 4: Same as Fig. 3, but in the stationary instability

regime (¢ = Ra/Ral — 1 = 0.085) for large (L) and small ()
initial perturbation amplitudes.
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FIG. 5: The saturation amplitude Asqer = A(t — o0) as a
function of ¢ = Ra/Ra®—1 (parameters as in Fig.3). The gray
thick line corresponds to a single-component fluid (¢ = 0).
The gray dots show numerical solutions, while the solid lines
are analytical solutions for ) = —10 [Eq.(46)] and ¢ = 10 [5].
The dashed curve indicates an unstable solution.

we start from an initially homogeneous concentration dis-
tribution, the concentration profile builds up together
with the development of the instability. If the convec-
tive motion is already strong enough (by starting with a
finite convection amplitude), it can stop the development
of the concentration profile by advection. So the decisive
point is, whether the convective motion becomes strong
enough to stop the buildup of the concentration profile,
or whether the concentration field has enough time to
build up its linear profile that stops convective motion.
The time of the instability evolution depends logarithmi-
cally on the initial amplitude of the perturbation. Thus,
the final state that is reached depends on the initial value
of the perturbation amplitude.

The saturation amplitude of the stationary convective
state can also be obtained analytically. In [6] we de-
rived an analytical formula [Eq.(83)] for the saturation
amplitude for the case of a positive separation ratio in
the presence of a magnetic field. This formula is valid for
negative 1 as well and is adjusted to the present field-free
case by M1 =0 = M. It can be written as

187% 1 3272
= — L 46
Ra 1+ 40‘12 A2 342 [ (46)

A similar formula has been derived in [16] (Eq.4.1b) us-
ing a 5 mode Galerkin representation of the concentra-
tion field. The bifurcation scenario is discussed using
the amplitude A of the convective flow as a function of
the Rayleigh number (Fig. 5). There are two branches,
one branch (solid line) approaches the reference curve
for pure liquids, while the other branch (dashed line)
goes asymptotically to a small value ~ /L|¢| for large
Ra. According to our numerical solutions only the up-
per branch corresponds to a stable solution and can be
realized experimentally.

C. The case Ra <0

When heating from above we need to determine the
wave number k. of the most unstable mode for each value
of the Rayleigh number before we can solve the nonlinear
problem. As it was noted in Sec. IIID, we can reliably
use the linear stability analysis only for large values of
|Ra|, where k% ~ |Ra|. A typical simulation run for heat-
ing from above is given in Fig. 6. Before the amplitude
takes its stationary value there is an overshoot, which
is also observed in experiments [17, 18]. The convection
amplitude always saturates to a finite value, indepen-
dently of the initial conditions and the k. value chosen.
For moderate values of the Rayleigh number (|Ra| ~ 7?),
we cannot predict the wavelength of the structure that is
actually realized, but from the numerical simulations we
can infer that, qualitatively, the behavior of the system
is independent of the wavelength.

To find the saturation amplitude as a function of the
Rayleigh number we cannot use the formula (46) since in
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FIG. 6: The time dependence of the convection amplitude
A(t) by heating from above (Ra = —129983); parameters as
in Fig.3.
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FIG. 7: The saturation amplitude Asq: of the convective ve-
locity by heating from above as a function of the Rayleigh
number times 107%. Gray dots are numerical solutions, while
the solid line is the analytical solution (48); parameters as in
Fig.3.

that formula we have already fixed k = 7. If we repeat
the procedure in [6] that led to (46) for an arbitrary value
of k, we get the general expression

3k* + 8k%72 4 167 —-15 4L |
4k2| Ral © 3A24+20(k2 +m2) A2
(47)
As discussed in Sec.IIID our treatment is applicable for
large values of |Ral|, only, in the case of negative 1) and
negative Ra. In that regime we can use Eq.(26) for the
value of k. and get the saturation amplitude

2., 16
A= o +a>L\7j;|s/a|Ra|. (48)

In Fig. 7 this asymptotic expression (48) is shown as a
solid line. Equation (48) also reveals that this instability
is not of the standard pitchfork variety, since A scales
with |Ra|'/* rather than |Ra|'2. One should keep in
mind, however, that Eq.(48) is valid for |Ra| > |Rac|,
Eq.(25), only, and does not determine the possible form

of an amplitude equation close to onset. The unusual
scaling of the pattern amplitude in the experimentally
relevant regime far above |Ra.| is a consequence of the
Ra dependence of the appropriate wavelength. Close to
onset such a feature would be quite uncommon. Here, it
is based on the huge difference between the concentration
and the thermal diffusion time scales, as discussed after
Eq.(28).

V. SUMMARY

When heating from below any binary mixture with
negative separation ratio, the thermal and solutal den-
sity gradients are opposed such that the linear station-
ary thermal instability is suppressed for ¢ < —1. In-
stead, this antagonistic behavior leads to a linear convec-
tive instability of the oscillatory type at Ra?, the critical
Rayleigh number for the onset of convection in the single
fluid case. This feature is found for ferrofluids, too, but
the nonlinear treatment shows that the linearly unsta-
ble oscillatory states are transients only and decay after
some time, rendering the final convection-free state sta-
ble. Above a second threshold, somewhat higher than
Ra?, a finite amplitude stationary instability is found,
while small amplitude disturbances do not destroy the
convection-free state.

When heating from above any binary mixture with
negative separation ratio ¢y < —1, a linear stationary
instability is found, which is basically driven by the
solutal buoyancy and only slightly modified by thermal
variations. In ferrofluids, however, the concentration
and temperature dynamics show completely different
behavior. Thus, this stationary instability (by heating
from above and negative separation ratio) is very
different from that obtained by heating from below
with a positive separation ratio. In the former case
small scale structures arise at very high Ra numbers,
whose wavelength decreases strongly with increasing
Ra. For smaller Ra numbers (|Ra| ~ Ral) the present
procedure, using the separation of thermal conduction
and concentration diffusion times, breaks down.
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APPENDIX

In this appendix we derive the asymptotic relations (26)-
(-28). To that end we use the Galerkin representation
(21)—(23) and get the (negative) Rayleigh number Ra, as
a function of the wave vector k and the growth rate A



(k% + w2)(3k* + 8k2m% + 167%) (LK% + \)(Lk? + L2 + \)

—|Ra| =

Here we have simplified the formula using the fact A <
72 Pr. If we consider relation (A1) as an implicit function
A(Ra, k), we obtain the wavelength of the most unstable
mode by finding the maximum of this function with re-
spect to k for a given value of Ra. Analytically this pro-
cedure is rather cumbersome, but it reveals rigorously
that A scales with Lk? and is, thus, rather small. The
numerical maximization of A\(Ra, k) shows that k grows
when Ra increases. For large values of k (> 7) we can
simplify formula (A1) and get

k2 -1

[YIL
|Ra| — k2

A+ Lk? (42)
for negative ¢ and negative Ra. If we fix Ra and consider
A as a function of k, this function has a maximum given
by (26), which corresponds to the most unstable mode.
The wave number of the most unstable mode and the
growth rate for this mode are given by (28).

3k2 (KAL2[1 + ) + LE2(ALm2[1 + ] + A2 + ¥]) + M\ + Lw2[4 +4]))

(

A simpler way of getting the asymptotic relations (26)—
(28) that also reveals the physical nature of this case, is
to consider Egs. (14)—(16) far from the upper and lower
boundaries. In this region the fields are rather smooth.
Due to the smallness of A ~ Lk? we can neglect the
terms containing the growth rate A anywhere, except for
the equation for the concentration field and get

0 = — Rak?*(0 —vc) + k'w, (A3)
w = k%0, (A4)
Ae = —Lk*(c+0). (A5)

Thus we have reduced the differential equations to al-
gebraic ones. That means that the dispersion relation
decouples from the problem of finding the field profiles.
The condition to have a nontrivial solution of (A3)—(A5),
is identical to Eq.(A2).
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