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1. Introduction

Hydrodynamics of simple fluids (liquids and gases) is a classical textbook subject that
still bears a lot of interesting and unsolved problems (e.g. turbulence) due to its inherent
nonlinear nature. The use of computers and the renewed interest in nonlinear phenomena
(e.g. instabilities, pattern formation) has led to a revival of that classical subject. On the
other hand it has become possible to apply hydrodynamics also to more complex systems.
This was facilitated by a deeper understanding of hydrodynamics based on symmetries
and thermodynamics [1-4]. It can now be used as a general method to describe macro-
scopically the dynamics of many condensed systems including liquid crystals, superfluid
liquids, crystals, magnetic systems etc. The foundations for the linear hydrodynamic
description of liquid crystals were laid in the *70s [5-8], while in the '80s this method was
further applied to nonlinear descriptions [9, 10] and to increasingly more complex liquid
crystal phases [11-16].

The hydrodynamic method is based on the observation that in most condensed systems
there is only a small number of slow, long living processes compared to the huge number
of fast, microscopic degrees of freedom, which can be discarded in a description of the
macroscopic behaviour. The hydrodynamic variables describe cooperative phenomena
that do not relax in finite time in the homogeneous limit, i.e. for the Fourier transformed
modes the frequency w vanishes for vanishing wavevector k, w(k — 0) — 0. The point
is that these hydrodynamic variables can uniquely be identified using conservation laws
(related to global symmetries) and broken symmetries (in the case of complex systems).
For time and length scales, on which all the fast, local microscopic degrees of freedom
have relaxed to their equilibrium value, this hydrodynamic description is exact.

In some cases a few of the non-hydrodynamic, relaxing processes become so slow
that their relaxation time is comparable to hydrodynamic time scales [17-18]. Examples
are elastic stress relaxation in polymers, order parameter relaxation near second order
(or weakly first order) phase transitions (giving rise to soft modes), relative rotations
of nematic side chains with respect to the backbone segments in side-chain polymers
etc. A strictly hydrodynamic theory (considering only hydrodynamic variables) would
be confined in its applicability to times longer than such slow relaxation times and
thus, be insufficient for many purposes. In that situation it is reasonable to extend
hydrodynamics to “macroscopic dynamics” incorporating the slow relaxational variables.
The first example of this procedure was used to describe the (mean field) dynamics of a
superfluid near the phase transition to the normal fluid [3] by including one soft mode
(the order parameter strength). Similarly slowly relaxing variables are also important
for the dynamics near various phase transitions in liquid crystals [19-29] and near liquid
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crystalline defects, although in the latter case generally they are only used quasistatically
[30-35]. However, there are no general rules or arguments, when or what kind of slowly
relaxing variables exist in a given system. For polymers [36-38] this will be discussed in
Sec. 2

Since the microscopic degrees of freedom have reached their thermodynamic equilib-
rium state (“local thermodynamic equilibrium”) on the hydrodynamic time scale, one can
use thermodynamics (locally) to describe the remaining slow variables. This leads imme-
diately to the energetics of the system, i.e. a thermodynamic potential (e.g. the energy)
as a function of all variables, or equivalently the thermodynamic conjugate quantities
expressed by the variables using phenomenological static susceptibilities (e.g. the density
expressed by the pressure via the compressibility). In a second step the dynamics of the
system is obtained by expressing the currents or quasi-currents by the thermodynamic
forces (the gradients of the thermodynamic conjugates). These expansions contain dy-
namic phenomenological coefficients (transport parameters). Within the thermodynamic
framework it is very fruitful to split up the currents and quasi-currents into additive re-
versible (entropy conserving) and irreversible (entropy increasing) parts. This procedure
is explained in more detail in [39].

In order to derive a hydrodynamic or macroscopic description of thin films or interfaces
made of complex fluids, one can setup the appropriate three-dimensional theory and
then take the limit of vanishing film thickness. For the systems we have in mind —
insoluble polymers, wetting layers of entangled polymers, polymeric surfactant films,
layers of polymeric liquid crystalline material etc. between or on top of bulk liquids —
this procedure leads to an effective bulk problem, where the dynamic properties of the
film or interface are manifest in complex boundary conditions. Very often such effective
boundary conditions are postulated or assumed, while the present treatment allows a
systematic derivation and a detailed connection to known bulk properties of the film or
interfacial material.

The main advantage of the hydrodynamic method rests in its high generality, which
allows its application to very different systems. There are no model dependent assump-
tions and only very fundamental symmetry and thermodynamic arguments are used.
The occurence of phenomenological parameters in the static and dynamic expansions,
however, are the prize one has to pay for this generality. The only restriction on the
applicability of a hydrodynamic theory arises from the validity of the static and dynamic
expansions used. Going beyond hydrodynamics it is not possible to predict, if and which
non-hydrodynamic variables can become slow, although the generalized theory, which
includes such variables, is still a powerful theory albeit less fundamental than a purely
hydrodynamic theory. Its practical use is confined to situations with a clear-cut dis-
tinction between the macroscopic time scale (relevant for only a few variables) and the
microscopic one (relevant for all the others)

2. Hydrodynamic Film Equations

For the three-phase system we are going to describe, bulk fluid; / interface / bulk fluid,,
we have to write down hydrodynamic equations for each phase separately. For simplicity
we will assume the bulk fluids to be simple liquids, although a generalization to complex
liquids would be easy at that point. Thus, the bulk is described by two different sets
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of usual hydrodynamic equations, which includes the popular special cases of symmetric
fluids (liquid; equal to liquids) or surface layers (liquids equal to vapor or vacuum).

The interface or film shall be a polymeric fluid. Polymer solutions or melts differ from
simple (low molecular weight) liquids by their viscoelasticity. On short time and length
scales they sustain elastic stresses, while in the low frequency, long wavelength limit they
flow like a usual viscous fluid. This behaviour can be accounted for by introducing a
slowly relaxing field, which describes the transient elasticity. Similarly to crystals and
solids, whose permanent elasticity is described by a second rank strain tensor, we also
use a symmetric second rank tensor as macroscopic variable in the polymeric case. In
crystalline material, however, strains are related to displacements of particles, which
return to their original position in equilibrium and the strain tensor is derived from a
displacement vector (taking symmetrized gradients of it). This displacement vector is the
symmetry variable of crystals connected with the spontaneous breaking of translational
symmetry due to the appearance of a lattice. In polymers on the other hand, no such
equilibrium lattice exists and strains are not related to displacements, but to dynamical
entanglements of long chains. Thus we regard the slowly relaxing strain tensor in poly-
mers as containing six independent macroscopic variables, three of which transform into
symmetry variables and three into microscopic variables, when switching to permanent
elasticity [40]. In the linear domain this model is equivalent to a generalized Maxwell ap-
proach, although taking the polymeric strain explicitly as a dynamical variable (instead
of using complex and frequency dependent transport parameters in an ad hoc manner),
allows the necessary generalizations to liquid crystalline or otherwise complex systems.
Especially the coupling to other macroscopic variables is straightforward in the present
approach, but hardly feasible in the generalized Maxwell description. Shear thinning or
thickening effects can be dealt with in principle by allowing the viscosities to depend on
the dynamic variables, while normal stress effects are not covered.

The internal, macroscopic state of the film or membrane is described by the fields
pm (density), gi(m) (momentum density), €,, (energy density) and €;; (transient elastic
strain). Since we will take the limit of vanishing film thickness at the end, it is sufficient
to take the fields at the mid-plane of the film, e.g. p,, = p|.=o. Thus all fields are two-
dimensional (areal) densities instead of three-dimensional (volume) densities. Since we
are interested in small deviations of the film from its flat equilibrium state, the mid-plane
can be taken as z = 0. Changes of the variables are connected to entropy changes (ds)
by the Gibbs relation

Tds = dey — pdpmy, — vidggm) — Yy degj, (1)

thus defining the conjugate quantities temperature 7', chemical potential pu, velocity v;
and transient elastic stress 1;;. There are two conservation laws for mass and momentum

pm 4 Vig™ = and g™ =0 =0, (2)

where O',L-(m) is the stress tensor of the film. Using the entropy (instead of the energy) as

dynamical variable there are two generally non-conserved quantities

R
s+ V7, = f and éij + X,‘j =0 (3)
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with j; the entropy current density and R the dissipation function. According to the laws
of thermodynamics R is zero for reversible processes (and the entropy conserved), while
dissipative dynamics leads to R > 0. The quasi-current X;; just reflects the relaxative
dynamics of the transient elasticity.

To get a closed system of equations we have to express the currents by the variables.
This is a two-stage process comprising the static and the dynamic constitutive equations.
First the conjugate quantities, defined in (1), are expanded into the variables (and into
their gradients if symmetry variables are involved) using general symmetry and invari-
ance principles. The most efficient way to obtain this is to setup a phenomenological
energy functional, which defines the conjugate quantities via variational derivation. In
the present case we have

m = 0+ Bt caleas — 3eridas)? +e1hs + eV 16ar)’ ()
where {a, 3,7} € {z,y}. In (4) € denotes the usual free energy of a simple liquid
containing the specific heat, the compressibility x and the thermal expansion coefficient
as static susceptibilities. The elastic constants ¢y, cs, ¢, and the (orientational elastic
constant) ¢, describe in-plane compression, in-plane shear, transverse stretching and bend
of the film, respectively. Although the material of the film is assumed to be isotropic, the
film has a preferred direction rendering it uniaxial and leading to ¢s # ¢;. The bend,
which is neglected in bulk elasticity, can be important for films or membranes. Film
compression, €,, does not occur in thin films. Nonlinearities could be incorporated by
going beyond the bilinear forms in (4).

The currents and quasi-currents are split into two parts each, a reversible and an
irreversible one. Both sets are then expanded into the thermodynamic forces, i.e. the
gradients of the thermodynamic conjugates, where the reversible and irreversible parts
have to be time-reversal symmetric with R = 0 and antisymmetric with R > 0, respec-
tively. For the former we find

m 1
g™ = pvi, Xij = = 5(Vivj + Vi) (5)
ji = sui, ai(;”) = —v;vj — pdij + Yij

Besides the usual transport terms and the hydrostatic pressure, eq.(5) contains the elastic
stress ;5. The irreversible part of the currents and quasi-currents can be obtained from
a phenomenological expression of the dissipation function

2R = vj3(Viv) ) (Vi) + vy(VaV02)? + Fijri Yijbn + Gijkimn (Vi) (Vatr), (6)
where the tensors v and F' are of the form
Vijii = V|0ia05a0kp018 + Vs0ia0kad;adis + V10iadkal;jz012 (7)

Here v, v and v, are the viscosities according to uniaxial in-plane compressional flow,
in-plane shear flow and transverse film-stretching flow, while v, is the dissipative analogue
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to the bend elastic constant. Generally there is vs # v, because of surface effects. The
coefficients F|, Fs and F; describe the relaxation of in-plane compressional strain, in-
plane shear strain and transverse film-stretching strain. If these F'—coefficients were
all zero, the elasticity would be permanent describing a solid. The tensor G is therefore
identified as the vacancy or defect diffusion tensor present in any solid [5] (but neglected in
the usual elasticity theory). Having non-zero relaxation coefficients F', however, vacancy
diffusion can be neglected. The positivity of the entropy production is achieved by posing
some restrictions on the dissipative transport parameters v, F' and G. The irreversible
parts of the currents and quasi-currents are derived from eq.(6) by partial derivatives with
respect to the appropriate conjugate quantities, e.g. X;; = 0R/6;; — Vi (0R/6V 1)i5).

3. Effective Boundary Value Problem

We are now able to formulate the original three-phase problem as a two-phase problem
with effective boundary conditions. First we start with a couple of simplifications. Since
we are interested in the surface-specific hydrodynamic modes only, all equations can be
linearized and incompressibility of the bulk liquids (but not of the film) can be assumed.
In addition the thermal degree of freedom will be neglected. The bulk equations then
read [41]

p(a)f}i(a) = —V;p\@ + n(a)Avi(a) + Vsz(-;) and divv(® =0 (8)

where p(®) is the pressure in each liquid (a € {1,2}) including the gravitational con-
tribution p(*g z due to a gravitational field along the film normal. In Eq.(8) Eg?) are
the components of the fluctuating stress tensor in each liquid, which are added in or-
der to calculate the dynamic structure factor by standard procedures afterwards. Near
equilibrium the fluctuating stress tensor is a Gaussian white noise process, whose second
moment is related to the dissipation by [42]

< S, ) S () >= 2k T (605 + 0udin)dap 0(x — ') 5t — ) (9)

At the boundary between two liquids that do not penetrate, the velocity components
across the boundary have to be the same in each liquid, otherwise there would be no
well-defined boundary at all. In the limit of vanishing film thickness this leads to the
kinematic boundary conditions

vz(l)(ac, y,2=0,t) = v,(z,y,t) = ’UZ(Q)(.I, y,2=0,1) (10)

where the boundary can be taken as the plane z = 0, because of the linearization used. If

there is no film at the interface, the boundary condition concerning the stress equilibrium
reads [41]

oD (z,y,0,t) — 02 (2,y,0,t) = 6. A AL ((, y, 1) (11)

indicating that shear stresses (i € {x,y}) are continuous at the boundary, while the
compressional stress 0., makes a jump across the boundary due to the surface tension.
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Bending the boundary (described by the transverse Laplacian of the boundary displace-
ment function ((x,y,t)) leads to the Laplacian force (per unit area) on the r.h.s. of (11).
With the film present at the interface Eq.(11) has to be amended by the force (per unit

area) that can be sustained or maintained by the film. The latter is given by Vjai(;n)
and Eq.(11) finally changes into

1z

o (@,y,2=0,t) — 0D (2,y,2=0,t) = V0" (2,y,8) + §:AA  ((z,y,t)  (12)

The system of equations becomes closed by the geometric relation

C(.ﬁl?,y,t) = 'Uz(xayvt) (13)

Note that V;( is not equal to egln), because of the relaxation (and diffusion) of the latter
quantity.

Due to the linearization all film quantities can be expressed by wv,, which itself is
expressed by the bulk velocities via (10). Thus, the boundary conditions are completely
formulated in bulk quantities arriving at a two-phase description with effective boundary
conditions. In time-Fourier transformed form they read

(T 4 9,00+ 50 =],

1 (14)
— [P (V0P + V@) + 52 - p?] = —(CiAL +06;:DAY) vV (z,y, w)
with '
C ( ) I . 4 ZWT”C”
(W) = Vit —
W X T v 1+ W)
Cy(w) =iwrs + 50
1+ twTy (15)
] WwTCl
C, =A —_—
(@) v 1+ wry
D(w) = —iwyy — WL
1+ wr)

Eq.(14) contains the effects of in-plane compressibility x, bare surface tension A, film
viscosities vf | 4}, elastic ¢, and viscous v, bend coeflicient, as well as the elastic ¢y |3
and relaxation coefficients of the film. The latter have been replaced by relaxation times
T with 7{11’8,“} = F{1 s} ¢{L,s}- Boundary conditions of the form (14) have already
been given in the literature [43-45] using phenomenological ansaetze or models for the C;
parameters. The advantage of the present method is that these parameters are derived
from macroscopic-hydrodynamic equations, where the material parameters of the film
have a well-defined meaning. The method can also be generalized to different kinds of
films or interfaces, just by replacing the set of macroscopic equations for polymers (1-7)
with a different one. If the bulk fluids are not simple ones, Eq.(8) has to be changed
accordingly.

89



4. Results

For surface-related modes the ansatz v ~ exp(ikx) exp(—q)2) translates the bound-
ary value problem into an algebraic one, which can be solved by standard means. After
some straightforward, but involved linear algebra the mode spectrum and the dynamic
structure factor for surface waves is obtained. This has been done in [46] and will not
be repeated here. Only a few results will be quoted. The dynamic structure factor can
directly be measured in light scattering experiments [47-49].

Due to the uniaxial symmetry (in-plane isotropy) of the interface the in-plane shear
modes (characterized by Cy, v,) are decoupled from the rest. This mode does not
shift or undulate the interface and is not detectable by scattering techniques. The two
other modes, in-plane compression and transverse mode (characterized by C, and C.,
respectively), although generally coupled are decoupled in the symmetric case, fluidy =
fluidy. Then the transverse stretching modulus of the film augments the surface tension
at finite frequencies and provides an extra source of dissipation. As a result, the peak
of the dynamic structure factor of the transverse mode shifts to higher frequencies with
increasing k somewhat faster than the usual £3/2 law. Also the peak width is anomalously
broadened at intermediate k.

For a viscoelastic film at a liquid-vapor interface (i.e. po = 0 = 12) the transverse
and the in-plane compressional modes are coupled. In the conventional Lucassen picture
[43] of monolayer hydrodynamics, this coupling is manifest as a broadening of the peak
in the transverse-mode dynamic structure factor, which is maximized at some in-plane
compressibility. However, in the present case the complex, frequency-dependent contri-
bution to the in-plane compressional modulus due to entanglements significantly alters
the apparent maximizing value of the compressibility. Thus interfacial viscoelasticity
complicates considerably the interpretation of dynamic light scattering data.
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