Destabilization of a Layered System by Shear Flow
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I. Introduction

Shear experiments performed on a variety of lay-
ered systems have revealed a strong coupling be-
tween the orientation of the layers and the ap-
plied shear flow. Independent of the significant
differences between the system under investiga-
tion, shear turns out to influence both the orien-
tation and the arrangement of the layers. The ex-
periments were carried out on polymeric and low
molecular weight (LMW) lyotropic systems [1-4],
liquid crystalline polymers [5], LMW thermotropic
smectic A [6] and lamellar phases of block copoly-
mer melts [7-10]. Starting with a well aligned
state of layers parallel to the plates (“parallel”
alignment, see Fig. 1), by increasing the applied
shear rate, the layers become unstable and either
layers within the x2-plane (“perpendicular” align-
ment) [7] or multilamellar vesicles (“onions”) [1, 3]
form. In some systems a second parallel alignment
of the layers is observed at high shear rates [10].
If a statistical distribution of layer orientation is
chosen as initial condition, no parallel alignment
is observed at low shear rates and reorientation
phenomena seem to be governed by the applied
strain rather than the applied shear rate [4, 8].

In this contribution we present a simple model
to explain the destabilization of originally paral-
lel layers by an applied shear [11]. In contrast to
other approaches we derive the macroscopic hy-
drodynamic equations of our model and perform
a linear stability analysis of these equations. This
procedure allows us a straight forward inclusion
of dissipative effects. To derive the macroscopic
equations we follow the standard procedure of irre-
versible hydrodynamics [12-14]. In our simple pic-
ture all mentioned layered systems are isomorphic
to smectic A liquid crystals (LCs), i.e. we neglect
polymeric degrees of freedom and the coupling
of thermal layer fluctuations to the shear flow.
Within this simple model of a layered structure
we show that parallel layers are unstable above a
certain critical shear rate.
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Figure 1: We consider an idealized geometry of a shear
experiment. Between two parallel plates we assume a
defect-free well aligned lamellar phase. The upper plate
moves with the velocity % in positive x-direction, the
lower plate moves with the same wvelocity in negative
x-direction.

I1. Physical Mechanism

We consider an infinite layer of a mono-domain
smectic A liquid crystal of thickness d as shown
in Fig. 1. Both plates move with a velocity of %
along the x-axis but in opposite direction, thus
giving rise to an average shear rate of ¥ = “2.

Similar to LMW nematics one can easily define
a director 7 in layered systems via averaging over
the axes of the molecules. A second axis of the
system is given by the normal to the layers p. In
the usual picture of a smectic A LC 7 and p are
parallel since the director is perpendicular to the
layer by definition. The underlying nematic order
is thus totally governed by the smectic layering.
In our model we drop the assumption that 7 is
parallel to p. Both directions are dealed as in-
dependent variables which are coupled elastically.
This elastic coupling guarantees that # and p are
parallel in equilibrium.

The motivation for this generalized model of
a smectic A lies in the well known coupling be-
tween the shear flow and the nematic order: Ex-
posed to a shear flow a homeotropically aligned
nematic feels a torque on the director. Depending
on the material parameters this torque leads —in
the simplest case— to a flow alignment of . Our
key assumption is that this torque is also present
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Figure 2: A finite angle between the layer normal p
and the director n induces a tendency of the layers to
reduce their thickness (a). Supposing the total number
of layers is constant, the system tries to accommodate
this tendency by rotating the layers. Global rotations
are not possible due to the boundary conditions, so the
system rotates the layers locally as show in (b). The
amplitude of the undulations is highly exaggerated in
this figure. Note the difference in the directions: n is
tilted in the x-direction, whereas the wave vector of the
undulations points in the y-direction.

in a smectic A LC and that it is balanced by the
elastic coupling between n and p.

Under shear the balance between this torque
and the elastic coupling of © and p leads to a fi-
nite angle between these two directions, which we
call flow alignment. As illustrated in Fig. 2a this
flow alignment is equivalent to an effective dilata-
tion of the layers. As in the case of dilated ther-
motropic smectic A LCs, above a certain threshold
the system answers to this effective dilatation by
developing undulations [15, 16] (see Fig. 2b).

III. Set of Macroscopic Equations

In the following we will discuss briefly the terms
entering the energy density due to the symmetry
of the system. Besides 7 and p it is very conve-
nient to introduce the variable u which is the layer
displacement along the z-axis (u is connected to p

M). The director 7 does not distin-

ViD= 9G]
guish between head and tail, thus it must occur
quadratically in this energy density. Furthermore
the energy density of the system is invariant un-
der rigid rotations. In this paper we adopt the
standard notation 1 K1 (V - 1)2+5Ko[i - (V x #)]?
+%K3 [A x (V x 7)]? which represent splay, twist
and bend deformations respectively [17].
Similarly, in the part representing the layering

of the system, terms corresponding to rigid rota-
tions or translations must not occur. Since par-
ity requires that u occurs quadratically in the en-
ergy density, the lowest order terms can be written
as %K (% + ‘32715)2 + %Bo (%)2, describing the
curvature of the layers and their dilatations.

As mentioned above rigid rotations of 7 to-
gether with p do not contribute to the energy den-
sity due to rotational invariance, but relative ro-
tations of 7 versus p may contribute to the energy.
Assuming a small angle between 7 and p we write
this term as 3By (7 x p)2. We note that this term
is non-hydrodynamic, since it does not vanish in
the limit of small wave number excitations (i.e.
q — 0). It thus leads dynamically to a relaxation
and not to diffusive behavior in the long wave-
length limit.

In the following we make several simplifications:
1) Since bend deformations are rather higher or-
der gradient corrections to dilatations, if the angle
between 7 and p is small, we will neglect bend.
2) In the hydrodynamics of smectics twist defor-
mations are forbidden. Thus, for 7 close to p, any
twist of 7 has to be very small and we will neglect
it. 3) A curvature of the layers is very similar to a
splay deformation of the director, so we only keep
the latter one.

To derive the set of macroscopic equations de-
scribing our model we follow the standard proce-
dure [12-14]. In addition to the energy density
discussed above, other key ingredients in this pro-
cedure are the Gibbs relation, balance equations
for the macroscopic variables and the dissipation
function R. In the spirit of our model, we also
assume 7 and p to be independent variables in the
above relations. For details of the derivation of
the macroscopic equations see [11].

We find that the conditions for stationary solu-
tions of 7 and u are given by

1 1
0 = — Vi + —0iihy (1)
7
0 = V¥, (2)
with the flow alignment parameter M\ =

(A = 1)d5n, + (A + 1)d5n;,
ables 1 and U (related to 7 and Vu), the rota-
tional viscosity 7; ! and the transverse Kronecker
symbol 555- = 0;j — nin;j.

The macroscopic description of our model con-
tains elements of both, nematic and smectic A
hydrodynamics. Their usual descriptions are in-
cluded as limiting cases in our model, provided
we suppress the approximations made in the en-
ergy density mentioned above. This implies, that

the conjugated vari-



our model does not describe the nematic—smectic
A phase transition. To include the phase transi-
tion one has to take into account the nematic and
smectic order parameters as additional dynamic
macroscopic variables.

IV. Flow Alignment and its Consequences

We analyze the set of equations in two steps: First
we determine the flow field and the director as-
suming that the layers are unchanged by the shear
flow. In a second step we investigate undulations
of  and p with a wave vector parallel to the y-
direction.

Throughout our analysis the density p and the
temperature T are taken to be constant. We as-
sume weak anchoring at the boundaries in the
sense that the director is free to rotate around its
equilibrium homeotropic orientation without any
energy barrier. This implies that the boundaries
have no orienting effect on the director field.

Under the assumption that n and u are constant
the linear velocity profile ¥ = 4z¢é, satisfies linear
momentum conservation. Inserting this velocity
profile in Eq. (1) and supposing an unchanged lay-
ered structure leads to the equation

A+1 . B B
[— - /\ni} Y= _1nacnz + _Ona:(l —nz), (3)
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with n, = /1 — n2 and n, = 0. For a small angle
between 7 and p, we find! (to linear order in n,)

ny = YH A

As shown in Fig. 2a this result has impor-
tant consequences: The non-vanishing projection
of 7 on the flow direction directly leads to a z-
component of the director n, =1 — in2 + O(nd)
less than unity. Following the discussion in
Sect. II, this tilt of n is equivalent to an effective
dilatation of the layers.

To analyze the effect of this dilatation we per-
form a linear stability analysis of Eqs. (1-2), as-
suming that the undulations of # and p do not
couple to the velocity field. In accordance with
the results of [18] we suppose the wave vector of
the undulation to point in the vorticity direction
(Fig. 2b) ¢ = qyé,.

Undulating lamellae lie no longer in the zy-
plane, so their dilatation can no longer be mea-
sured along the z-axis. To take this into ac-
count we use the well known replacement [15, 16]

"Note that this stationary solution also occurs for [A| <
1. The tumbling solution found for nematics for |A\| < 1
above the nematic-smectic A transition cannot occur in
smectic A due to the layering.
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system. The undulation amplitude must vanish at
the plates, so our ansatz for the layer displacement
is (see also Fig. 2) u = A cos(%2) cos(qyy) + 3n22,
where A is the small amplitude of the undulations,
leading to a layer normal of the form

in the energy density of the

s

T2 sin(ay) &+ éx + O(42)

P = gy A cos(

(4)
and similar ansatz for 7
b1 7T . ~
N = Naby+ qA cos(gz) sin(qyy)éy

1 .
+ (1= 5np)é. + O0(A%mp). ()
In linear order the z- and z-components of (1) lead
to the same result as equation (3). From the y-
component of (1) we find that the ratio of the un-
dulation amplitudes contained in % and p is close

to unity A = Bl%}ﬁzﬁ n, A. Inserting this result

in (2) we find for the critical values:
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q;C = E K (6)
ByK =

2 0
= 4V T 7
Mo, By —2B; d ()

, 4 B ByK
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Before discussing numerical values, we want
to point out some important implications of our
model [Eq. (8)]. The critical shear rate increases
with increasing Bj. No undulation instability is
possible if 2B; exceeds By. This result could ex-
plain why some layered systems do not show a
destabilization of the layers parallel to the plates
under shear flow (e.g. most thermotropic smectic
A LCs far from the phase transition to the nematic
phase).

For smectic A LCs it is known [15, 16] that
the critical dilatation is of the order of 1072, so
we expect n, . to be of the order of 10~2. Thus,
there would be only a comparatively small change
to the uniaxial nature of a layered system even
just below the onset of the undulation instability.
To give a numerical value for the critical shear
rate appears rather difficult, because neither the
elastic constant By nor the rotational viscosity y;
are used for the hydrodynamic description of the
smectic A phase. Therefore, the only possibility
appears to find measurements in the vicinity of
the nematic-smectic A phase transition. Measure-
ments on LMW LCs made in [19] in the vicinity



of the nematic-smectic A transition indicate that
By is approximately one order of magnitude less
than By. As for 41 we could not find any measure-
ments which would allow an estimate of its value
in the smectic A phase. In the nematic phase y;
increases drastically towards the nematic-smectic
A transition.

V. Concluding Remarks

In this paper we have shown that a modification
of the usual smectic hydrodynamics (layer normal
and director are no longer parallel) leads to a flow
aligning behavior and thus to an effective dilata-
tion of the smectic layers. A linear stability analy-
sis shows, that above a critical shear rate the flow
alignment is strong enough to cause an undula-
tion instability and thus to destabilize the layered
structure. We point out, that the linearized analy-
sis presented here does not allow to predict which
structure will be stable at shear rates above the
critical shear rate. To overcome this problem two
strategies can be followed. Either one expands the
governing equations in small, but non-vanishing
amplitudes (in the vicinity of the threshold). Or
one attacks the full non-linear equations by direct
numerical integration. Following the lines pro-
posed above will allow to give a prediction of the
pattern formed above onset.

For a transition from undulating lamellae to re-
orientated lamellae or to multilamellar vesicles,
defects have to be created for topological rea-
sons. Since the order parameter varies spatially
in the vicinity of the defect core, a description of
such a process must include the full (tensorial)
nematic order parameter as macroscopic dynamic
variables. Both types of refinements (non-linear
analysis and inclusion of defects) are beyond the
scope of the present paper.

Using molecular dynamics computer simula-
tions Soddemann, Kremer and Diinweg recently
confirmed several features of the above model [20].
Namely they identified a flow alignment of the di-
rector and undulations developing above a criti-
cal shear rate. Furthermore Noirez [21] found in
shear experiment on a smectic A liquid crystalline
polymer in a cone-plate geometry, that the layer
thickness reduces slightly with increasing shear.
This result is compatible with the model presented
here as well. In addition, recent experiments by
Miiller et al. [2] on the lamellar phase of a ly-
otropic system (a LMW surfactant) under shear
suggest, that multilamellar vesicles develop via an
intermediate state characterized by a distribution
of director orientations in the plane perpendicu-

lar to the flow direction. These results are com-
patible with an undulation instability of the type
proposed here, since undulations lead to such a
distribution of director orientations. Nevertheless
further investigations on these points are highly
desirable.
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