
Destabilization of a Layered System by Shear FlowG�unter K. Auernhammer�, Helmut R. Brand�, Harald Pleinerx�Theoretis
he Physik III, Universit�at Bayreuth, 95440 Bayreuth, Germanyx Max-Plan
k-Institut f�ur Polymerfors
hung, 55021 Mainz, GermanyI. Introdu
tionShear experiments performed on a variety of lay-ered systems have revealed a strong 
oupling be-tween the orientation of the layers and the ap-plied shear 
ow. Independent of the signi�
antdi�eren
es between the system under investiga-tion, shear turns out to in
uen
e both the orien-tation and the arrangement of the layers. The ex-periments were 
arried out on polymeri
 and lowmole
ular weight (LMW) lyotropi
 systems [1{4℄,liquid 
rystalline polymers [5℄, LMW thermotropi
sme
ti
 A [6℄ and lamellar phases of blo
k 
opoly-mer melts [7{10℄. Starting with a well alignedstate of layers parallel to the plates (\parallel"alignment, see Fig. 1), by in
reasing the appliedshear rate, the layers be
ome unstable and eitherlayers within the xz-plane (\perpendi
ular" align-ment) [7℄ or multilamellar vesi
les (\onions") [1, 3℄form. In some systems a se
ond parallel alignmentof the layers is observed at high shear rates [10℄.If a statisti
al distribution of layer orientation is
hosen as initial 
ondition, no parallel alignmentis observed at low shear rates and reorientationphenomena seem to be governed by the appliedstrain rather than the applied shear rate [4, 8℄.In this 
ontribution we present a simple modelto explain the destabilization of originally paral-lel layers by an applied shear [11℄. In 
ontrast toother approa
hes we derive the ma
ros
opi
 hy-drodynami
 equations of our model and performa linear stability analysis of these equations. Thispro
edure allows us a straight forward in
lusionof dissipative e�e
ts. To derive the ma
ros
opi
equations we follow the standard pro
edure of irre-versible hydrodynami
s [12{14℄. In our simple pi
-ture all mentioned layered systems are isomorphi
to sme
ti
 A liquid 
rystals (LCs), i.e. we negle
tpolymeri
 degrees of freedom and the 
ouplingof thermal layer 
u
tuations to the shear 
ow.Within this simple model of a layered stru
turewe show that parallel layers are unstable above a
ertain 
riti
al shear rate.
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dFigure 1: We 
onsider an idealized geometry of a shearexperiment. Between two parallel plates we assume adefe
t-free well aligned lamellar phase. The upper platemoves with the velo
ity v02 in positive x-dire
tion, thelower plate moves with the same velo
ity in negativex-dire
tion.II. Physi
al Me
hanismWe 
onsider an in�nite layer of a mono-domainsme
ti
 A liquid 
rystal of thi
kness d as shownin Fig. 1. Both plates move with a velo
ity of v02along the x-axis but in opposite dire
tion, thusgiving rise to an average shear rate of _
 = v0d .Similar to LMW nemati
s one 
an easily de�nea dire
tor n̂ in layered systems via averaging overthe axes of the mole
ules. A se
ond axis of thesystem is given by the normal to the layers p̂. Inthe usual pi
ture of a sme
ti
 A LC n̂ and p̂ areparallel sin
e the dire
tor is perpendi
ular to thelayer by de�nition. The underlying nemati
 orderis thus totally governed by the sme
ti
 layering.In our model we drop the assumption that n̂ isparallel to p̂. Both dire
tions are dealed as in-dependent variables whi
h are 
oupled elasti
ally.This elasti
 
oupling guarantees that n̂ and p̂ areparallel in equilibrium.The motivation for this generalized model ofa sme
ti
 A lies in the well known 
oupling be-tween the shear 
ow and the nemati
 order: Ex-posed to a shear 
ow a homeotropi
ally alignednemati
 feels a torque on the dire
tor. Dependingon the material parameters this torque leads |inthe simplest 
ase| to a 
ow alignment of n̂. Ourkey assumption is that this torque is also present1
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Figure 2: A �nite angle between the layer normal p̂and the dire
tor n̂ indu
es a tenden
y of the layers toredu
e their thi
kness (a). Supposing the total numberof layers is 
onstant, the system tries to a

ommodatethis tenden
y by rotating the layers. Global rotationsare not possible due to the boundary 
onditions, so thesystem rotates the layers lo
ally as show in (b). Theamplitude of the undulations is highly exaggerated inthis �gure. Note the di�eren
e in the dire
tions: n̂ istilted in the x-dire
tion, whereas the wave ve
tor of theundulations points in the y-dire
tion.in a sme
ti
 A LC and that it is balan
ed by theelasti
 
oupling between n̂ and p̂.Under shear the balan
e between this torqueand the elasti
 
oupling of n̂ and p̂ leads to a �-nite angle between these two dire
tions, whi
h we
all 
ow alignment. As illustrated in Fig. 2a this
ow alignment is equivalent to an e�e
tive dilata-tion of the layers. As in the 
ase of dilated ther-motropi
 sme
ti
 A LCs, above a 
ertain thresholdthe system answers to this e�e
tive dilatation bydeveloping undulations [15, 16℄ (see Fig. 2b).III. Set of Ma
ros
opi
 EquationsIn the following we will dis
uss brie
y the termsentering the energy density due to the symmetryof the system. Besides n̂ and p̂ it is very 
onve-nient to introdu
e the variable u whi
h is the layerdispla
ement along the z-axis (u is 
onne
ted to p̂via p̂ = r(z�u)jr(z�u)j). The dire
tor n̂ does not distin-guish between head and tail, thus it must o

urquadrati
ally in this energy density. Furthermorethe energy density of the system is invariant un-der rigid rotations. In this paper we adopt thestandard notation 12K1(r � n̂)2+12K2[n̂ � (r� n̂)℄2+12K3[n̂� (r� n̂)℄2 whi
h represent splay, twistand bend deformations respe
tively [17℄.Similarly, in the part representing the layering

of the system, terms 
orresponding to rigid rota-tions or translations must not o

ur. Sin
e par-ity requires that u o

urs quadrati
ally in the en-ergy density, the lowest order terms 
an be writtenas 12K ��2u�x2 + �2u�y2 �2 + 12B0 ��u�z �2 ; des
ribing the
urvature of the layers and their dilatations.As mentioned above rigid rotations of n̂ to-gether with p̂ do not 
ontribute to the energy den-sity due to rotational invarian
e, but relative ro-tations of n̂ versus p̂ may 
ontribute to the energy.Assuming a small angle between n̂ and p̂ we writethis term as 12B1(n̂� p̂)2: We note that this termis non-hydrodynami
, sin
e it does not vanish inthe limit of small wave number ex
itations (i.e.q ! 0). It thus leads dynami
ally to a relaxationand not to di�usive behavior in the long wave-length limit.In the following we make several simpli�
ations:1) Sin
e bend deformations are rather higher or-der gradient 
orre
tions to dilatations, if the anglebetween n̂ and p̂ is small, we will negle
t bend.2) In the hydrodynami
s of sme
ti
s twist defor-mations are forbidden. Thus, for n̂ 
lose to p̂, anytwist of n̂ has to be very small and we will negle
tit. 3) A 
urvature of the layers is very similar to asplay deformation of the dire
tor, so we only keepthe latter one.To derive the set of ma
ros
opi
 equations de-s
ribing our model we follow the standard pro
e-dure [12{14℄. In addition to the energy densitydis
ussed above, other key ingredients in this pro-
edure are the Gibbs relation, balan
e equationsfor the ma
ros
opi
 variables and the dissipationfun
tion R. In the spirit of our model, we alsoassume n̂ and p̂ to be independent variables in theabove relations. For details of the derivation ofthe ma
ros
opi
 equations see [11℄.We �nd that the 
onditions for stationary solu-tions of n̂ and u are given by0 = � 12�ijkrjvk + 1
1 Æ?ikhk (1)0 = ri	i (2)with the 
ow alignment parameter �ijk =(�� 1)Æ?ijnk + (�+ 1)Æ?iknj , the 
onjugated vari-ables ~h and ~	 (related to n̂ and ru), the rota-tional vis
osity 
�11 and the transverse Krone
kersymbol Æ?ij = Æij � ninj.The ma
ros
opi
 des
ription of our model 
on-tains elements of both, nemati
 and sme
ti
 Ahydrodynami
s. Their usual des
riptions are in-
luded as limiting 
ases in our model, providedwe suppress the approximations made in the en-ergy density mentioned above. This implies, that2



our model does not des
ribe the nemati
{sme
ti
A phase transition. To in
lude the phase transi-tion one has to take into a

ount the nemati
 andsme
ti
 order parameters as additional dynami
ma
ros
opi
 variables.IV. Flow Alignment and its Consequen
esWe analyze the set of equations in two steps: Firstwe determine the 
ow �eld and the dire
tor as-suming that the layers are un
hanged by the shear
ow. In a se
ond step we investigate undulationsof n̂ and p̂ with a wave ve
tor parallel to the y-dire
tion.Throughout our analysis the density � and thetemperature T are taken to be 
onstant. We as-sume weak an
horing at the boundaries in thesense that the dire
tor is free to rotate around itsequilibrium homeotropi
 orientation without anyenergy barrier. This implies that the boundarieshave no orienting e�e
t on the dire
tor �eld.Under the assumption that n̂ and u are 
onstantthe linear velo
ity pro�le ~v = _
zêx satis�es linearmomentum 
onservation. Inserting this velo
itypro�le in Eq. (1) and supposing an un
hanged lay-ered stru
ture leads to the equation��+ 12 � �n2x� _
 = B1
1 nxnz + B0
1 nx(1�nz); (3)with nz = p1� n2x and ny = 0. For a small anglebetween n̂ and p̂, we �nd1 (to linear order in nx)nx = _
 
1B1 1+�2 :As shown in Fig. 2a this result has impor-tant 
onsequen
es: The non-vanishing proje
tionof n̂ on the 
ow dire
tion dire
tly leads to a z-
omponent of the dire
tor nz = 1� 12n2x +O(n4x)less than unity. Following the dis
ussion inSe
t. II, this tilt of n̂ is equivalent to an e�e
tivedilatation of the layers.To analyze the e�e
t of this dilatation we per-form a linear stability analysis of Eqs. (1{2), as-suming that the undulations of n̂ and p̂ do not
ouple to the velo
ity �eld. In a

ordan
e withthe results of [18℄ we suppose the wave ve
tor ofthe undulation to point in the vorti
ity dire
tion(Fig. 2b) ~q = qyêy.Undulating lamellae lie no longer in the xy-plane, so their dilatation 
an no longer be mea-sured along the z-axis. To take this into a
-
ount we use the well known repla
ement [15, 16℄1Note that this stationary solution also o

urs for j�j <1. The tumbling solution found for nemati
s for j�j < 1above the nemati
-sme
ti
 A transition 
annot o

ur insme
ti
 A due to the layering.

�u�z ! �u�z � 12 ��u�y�2 in the energy density of thesystem. The undulation amplitude must vanish atthe plates, so our ansatz for the layer displa
ementis (see also Fig. 2) u = A 
os(�d z) 
os(qyy) + 12n2xz;where A is the small amplitude of the undulations,leading to a layer normal of the formp̂ = qyA 
os(�d z) sin(qyy) êy + êz +O(A2) (4)and similar ansatz for n̂n̂ = nxêx + qy ~A 
os(�d z) sin(qyy)êy+ (1� 12n2x)êz +O( ~A2; n4x): (5)In linear order the x- and z-
omponents of (1) leadto the same result as equation (3). From the y-
omponent of (1) we �nd that the ratio of the un-dulation amplitudes 
ontained in n̂ and p̂ is 
loseto unity ~A = B1B1+Kq2y nz A. Inserting this resultin (2) we �nd for the 
riti
al values:q2y;
 = �dsB0K (6)n2x;
 = 4 pB0KB0 � 2B1 �d (7)_

 = 41 + � B1
1 s pB0KB0 � 2B1 �d (8)Before dis
ussing numeri
al values, we wantto point out some important impli
ations of ourmodel [Eq. (8)℄. The 
riti
al shear rate in
reaseswith in
reasing B1. No undulation instability ispossible if 2B1 ex
eeds B0. This result 
ould ex-plain why some layered systems do not show adestabilization of the layers parallel to the platesunder shear 
ow (e.g. most thermotropi
 sme
ti
A LCs far from the phase transition to the nemati
phase).For sme
ti
 A LCs it is known [15, 16℄ thatthe 
riti
al dilatation is of the order of 10�5, sowe expe
t nx;
 to be of the order of 10�2. Thus,there would be only a 
omparatively small 
hangeto the uniaxial nature of a layered system evenjust below the onset of the undulation instability.To give a numeri
al value for the 
riti
al shearrate appears rather diÆ
ult, be
ause neither theelasti
 
onstant B1 nor the rotational vis
osity 
1are used for the hydrodynami
 des
ription of thesme
ti
 A phase. Therefore, the only possibilityappears to �nd measurements in the vi
inity ofthe nemati
-sme
ti
 A phase transition. Measure-ments on LMW LCs made in [19℄ in the vi
inity3



of the nemati
-sme
ti
 A transition indi
ate thatB1 is approximately one order of magnitude lessthan B0. As for 
1 we 
ould not �nd any measure-ments whi
h would allow an estimate of its valuein the sme
ti
 A phase. In the nemati
 phase 
1in
reases drasti
ally towards the nemati
-sme
ti
A transition.V. Con
luding RemarksIn this paper we have shown that a modi�
ationof the usual sme
ti
 hydrodynami
s (layer normaland dire
tor are no longer parallel) leads to a 
owaligning behavior and thus to an e�e
tive dilata-tion of the sme
ti
 layers. A linear stability analy-sis shows, that above a 
riti
al shear rate the 
owalignment is strong enough to 
ause an undula-tion instability and thus to destabilize the layeredstru
ture. We point out, that the linearized analy-sis presented here does not allow to predi
t whi
hstru
ture will be stable at shear rates above the
riti
al shear rate. To over
ome this problem twostrategies 
an be followed. Either one expands thegoverning equations in small, but non-vanishingamplitudes (in the vi
inity of the threshold). Orone atta
ks the full non-linear equations by dire
tnumeri
al integration. Following the lines pro-posed above will allow to give a predi
tion of thepattern formed above onset.For a transition from undulating lamellae to re-orientated lamellae or to multilamellar vesi
les,defe
ts have to be 
reated for topologi
al rea-sons. Sin
e the order parameter varies spatiallyin the vi
inity of the defe
t 
ore, a des
ription ofsu
h a pro
ess must in
lude the full (tensorial)nemati
 order parameter as ma
ros
opi
 dynami
variables. Both types of re�nements (non-linearanalysis and in
lusion of defe
ts) are beyond thes
ope of the present paper.Using mole
ular dynami
s 
omputer simula-tions Soddemann, Kremer and D�unweg re
ently
on�rmed several features of the above model [20℄.Namely they identi�ed a 
ow alignment of the di-re
tor and undulations developing above a 
riti-
al shear rate. Furthermore Noirez [21℄ found inshear experiment on a sme
ti
 A liquid 
rystallinepolymer in a 
one-plate geometry, that the layerthi
kness redu
es slightly with in
reasing shear.This result is 
ompatible with the model presentedhere as well. In addition, re
ent experiments byM�uller et al. [2℄ on the lamellar phase of a ly-otropi
 system (a LMW surfa
tant) under shearsuggest, that multilamellar vesi
les develop via anintermediate state 
hara
terized by a distributionof dire
tor orientations in the plane perpendi
u-

lar to the 
ow dire
tion. These results are 
om-patible with an undulation instability of the typeproposed here, sin
e undulations lead to su
h adistribution of dire
tor orientations. Neverthelessfurther investigations on these points are highlydesirable.Referen
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