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We derive the dispersion relation of surface waves for isotropic magnetic gels in
the presence of an external magnetic field normal to the free surface. Above a
critical field strength surface waves become linearly unstable with respect to a sta-
tionary pattern of surface protuberances. This linear stability criterion generalizes
that of the Rosensweig instability for ferrofluids by taking into account elasticity,
additionally.

1. Introduction and results

Surface undulations of the free surface of viscous liquids are known to be
able to propagate as gravity or capillary waves. In more complex systems
like viscoelastic liquids or gels the transient or permanent elasticity allows
for modified transverse elastic waves at free surfaces [1]. They are excited
e.g. by thermal fluctuations or by imposed temperature patterns on the sur-
face. In ferrofluids, colloidal solutions of magnetic nanoparticles in a carrier
fluid, magnetic stresses at the surface come into play. In particular, in an
external magnetic field normal to the surface there is a focusing effect on
the magnetization at the wave crests of an undulating surface with the ten-
dency to increase the undulations [2]. At a critical field strength no wave
propagation is possible and the surface becomes unstable with respect to a
stationary pattern of surface spikes (Rosensweig or normal field instability).
Here, we combine the two aspects of elasticity and superparamagnetic re-
sponse by dealing with (isotropic) ferrogels, a crosslinked polymer network
swollen with a ferrofluid [3]. Using linearized dynamic equations and bound-
ary conditions we get the general surface wave dispersion relation for ferrogels
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(in a normal external field), which contains as special cases those for ferroflu-
ids and non-magnetic gels and can be generalized to viscoelastic ferrofluids
and magnetorheological fluids. A linear stability analysis reveals the thresh-
old condition, above which stationary surface spikes grow. This critical field
depends on gravity, surface tension and on the elastic (shear) modulus of the
gel, while the critical wavelength of the emerging spike pattern is indepen-
dent of the latter. As in the case of ferrofluids neither the threshold nor the
critical wavelength depends on the viscosity [4].

2. Model and basic equations

The complete set of dynamic equations describing isotropic ferrogels was
given by E. Jarkova et al. [5] using the method of generalized hydrody-
namics (for uniaxial ferrogels [6] cf. [7]). There are various reversible and
irreversible dynamic crosscouplings between flow, elasticity and magnetiza-
tion. For simplicity we only keep those of them, which are presumably the
relevant ones for the present problem. In particular, we keep the magnetic
Maxwell and the elastic and viscous contributions to the stress tensor

Tij = δij(p +
1
2
B ·H)− 1

2
(BiHj + BjHi)− 2µ2εij − ν2(∇ivj +∇jvi) (1)

where p is the pressure, εij is the strain tensor, v the velocity field, and H
and B are the magnetic field and induction, respectively. The magnetization
M ≡ B − H is assumed to have relaxed to its static value given by the
magnetic field and magnetostatics, divB = 0 and curlH = 0, can be applied.
(We use the rational Gaussian or Heaviside system of units [8].) Global
incompressibility, divv = 0, and incompressibility of the gel network, εkk = 0,
is employed and only the shear elastic modulus µ2 and the shear viscosity ν2

enter the stress tensor.
Neglecting the thermal degree of freedom, magnetostriction, and taking

the simplest form for the dynamics of the elasticity we are left with the
linearized dynamic equations

∂

∂t
ρvi +∇jTij = −ρgδiz (2)

∂

∂t
εij −

1
2
(∇ivj +∇jvi) = 0 . (3)

where the gravitational force (∼ g) is acting along the negative z axis.
Indeed we model our system by an originally flat surface z = 0 dividing

the magnetic gel (z < 0) from vacuum (z > 0), cf. Fig.1, where the applied
external field (Bvac = B0ez = Hvac) is normal to the surface. The disper-
sion relation of periodic undulations, described by the surface displacement
ξ(x, y, t), is derived, and its stability investigated in the following.
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Figure 1: Small periodic perturbations ξ(x, y, t) of the flat surface z = 0
between the ferrogel of susceptibility χ in the lower half space and vacuum
in the upper half space.

To do this we need boundary conditions for our dynamic variables. First,
there are the magnetic ones [8], the mechanical ones guaranteeing a stress-free
surface, and the (linearized) kinematic one

n×H = n×Hvac n · B = n · Bvac (4)
n× T·n = n× Tvac·n (5)

n·T·n− n·Tvac·n = ρ g ξ + σ divn (6)
∂

∂t
ξ = vz (7)

all taken at the surface. The unit vector n is the surface normal, n =
∇(z − ξ)/|∇(z − ξ)|, and divn is twice the mean curvature. The vac-
uum stresses (superscript vac) are solely due to the magnetic fields (vacuum
Maxwell stress tensor). The normal stress difference between the magnetic
gel and the vacuum is balanced by gravity and the Laplace stress due to
curvature of the surface and the surface tension σ.

3. Linear deviations from the ground state

The system of equations and boundary conditions (1-7) always has the trivial
solution (ground state), where the surface is flat (ξ = 0, n0 = ez), flow and
deformations are absent (v = 0, εij = 0), and the fields are constant (M0 =
M0ez with M0 = (1 − 1/µ)B0, where µ is magnetic permeability). The
boundary condition (6) requires a non-zero, constant stress contribution, p0 =
−(1/2)(1 − 1/µ)B2

0 , which is of minor relevance, since in an incompressible
system the pressure has no physical meaning anymore and merely serves as
an auxiliary quantity that guarantees divv = 0 for all times, if flow is present.

We now allow for periodic surface undulations with frequency ω = ω0−iλ
(ω0 and λ real) and wavevector k = (kx, ky, 0)

ξ(x, y, t) = ξ̂e−ikxx−ikyy+iωt . (8)

describing propagating and damped surface waves. For ω = 0 a stationary
spatial pattern is obtained. Generally ω is a complex function of k. In a
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linear theory the amplitude ξ̂ is undetermined, Fourier modes of the type (8)
can be superimposed as appropriate, and deviations from the ground state of
all the other variables have to be proportional to ξ(x, y, t). Linear deviations
of the surface normal from the ground state due to undulations are given by
n1 ≡ n− n0 = (−∇xξ,−∇yξ, 0).

The linear deviations of the magnetic field and induction from the ground
state value, b ≡ B − B0 and h = H − H0, both for the ferrogel and
the vacuum (superscript vac), still obey the linear electrostatic equations,
b = µh, divb = 0 = curlh. This allows for the introduction of a magnetic
scalar potential [8] h = −∇Φm that has to be a potential function, ∆Φm = 0
(where ∆ = ∇2), with the appropriate solutions

Φm = Φ̂m ξ(x, y, t)ekz (9)
Φvac

m = Φ̂vac
m ξ(x, y, t)e−kz . (10)

for the lower (ferrogel) and upper (vacuum) half plane, respectively and
k2 = k2

x + k2
y. With the help of the magnetic boundary conditions (4) the

amplitudes are found to be [2]

Φ̂m = − 1
µ

Φ̂vac
m = − M0

1 + µ
(11)

For the velocity we make the usual partition into an irrotational (poten-
tial) and a rotational (source-free) part v = vpot + vrot with vpot = ∇φ and
vrot = ∇×Ψ. Incompressibility requires ∆φ = 0 and leads to the ansatz

φ = φ̂ ξ(x, y, t)ekz (12)

for the scalar velocity potential. The vector velocity potential can be written
as

Ψ = Ψ̂ ξ(x, y, t)eqz (13)

where the amplitudes φ̂ and Ψ̂ and the decay length q−1 are still undeter-
mined. Since only two of the three amplitudes Ψ̂ can be independent, we set
Ψ̂z = 0 without loss of generality resulting in vrot = (−qΨy, qΨx, −ikxΨy +
ikyΨx).

The strain εij can be expressed by the velocity via Eq.(3) and the linear
pressure deviation, p1 ≡ p − p0 is determined by Eq.(2). The latter can be
simplified considerably by the observation that the divergence of the magnetic
stress tensor vanishes, ∇i(H · B) − ∇j(HiBj + HjBi) = 0, in linear order.
With the help of Eq.(3), iω∇jεij = (1/2)∆vi, Eq.(2) takes the linear form

iωρvi +∇ip1 − (ν2 +
µ2

iω
)∆vi = −ρgδiz. (14)
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Taking div and curl of Eq.(14) we get [1]

p1 = −iωρφ + const. (15)

and q2 = k2 − ρω2

µ2 + iων2
(16)

respectively, where the unimportant constant in the pressure can be ignored.

4. Surface wave dispersion relation

We are left with three amplitudes, φ̂, Ψ̂x, Ψ̂y, that have to be related to the
undulation amplitude, ξ̂ by the stress boundary conditions (5,6). Without
loss of generality we can choose the in-plane wavevector k to be along the x
axis (ky = 0). It is easy to show that then also Ψ̂x = 0, which means vy = 0
and εyz = 0.

For linear deviations from the ground state the normal stress boundary
condition (6) can be written as

p1 +
µ

1 + µ
M2

0 kξ − σk2ξ − 2µ2εzz − 2ν2∇zvz − ρgξ = 0 . (17)

all taken at z = 0. In the shear stress boundary condition all magnetic
contributions cancel in linear order leading to εxz = 0 at z = 0. These two
conditions translate into a set of linear homogeneous algebraic equations for
the amplitudes φ̂ and Ψ̂y[

ω2 +
µ′

1 + µ
M2

0 k2 − σ′k3 − gk − 2µ̃2(ω)k2

]
φ̂

+
[

µ′

1 + µ
M2

0 k − σ′k2 − g − 2µ̃2(ω)q
]

(−ikxΨ̂y) = 0 . (18)

and

2k3φ̂ +
(
k2 + q2

)
(−ikxΨ̂y) = 0 . (19)

with the frequency dependent µ̃2(ω) ≡ µ′2 + iων′2 describing (kinematic)
elasticity and viscosity, and where we used the abbreviations µ′2 = µ2/ρ,
ν′2 = ν2/ρ, σ′ = σ/ρ, and µ′ = µ/ρ.

To have a nontrivial solution for equations (18) and (19) the determinant
of coefficients must vanish. This leads to the dispersion relation of surface
waves for ferrogels

ω2
(
2µ̃2(ω)k2 − ω2

)
+ ω2

(
σ′k3 + gk + 2µ̃2(ω)k2 − µ′

1 + µ
M2

0 k2

)
−4µ̃2

2(ω) k4

[
1−

(
1− ω2

µ̃2(ω)k2

)1/2
]

= 0 . (20)
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In the absence of an external magnetic field (M0 = 0) Eq.(20) reduces to the
dispersion relation for nonmagnetic gels [1]. It also contains as a special case
the surface wave dispersion relation for ferrofluids (in an external field) by
choosing µ̃2 = iων′2. It can be generalized to viscoelastic ferrofluids, whose
elasticity relaxes on a time scale τ−1, by replacing µ2 with iωτµ2/(1 + iωτ)
[1], and to magnetorheological fluids by allowing µ2, ν2, and τ being functions
of the external field.

The dispersion relation (20) is very complicated and it is impossible to
solve it analytically for ω(k). From non-magnetic gels it is known that
there are basically three wave regimes (neglecting dissipation or damping):
ω2 = σ′k3 (capillary waves), ω2 = αµ′2k

2 (Rayleigh elastic waves), and
ω2 = gk (gravity water waves) for small wavelengths (k � µ2/σ,

√
g/σ′),

intermediate ones (g/µ′2 � k � µ2/σ), and large ones (k � g/µ′2,
√

g/σ′),
respectively, where α is a number of order unity. For typical material values
(µ2 ≈ 1 kPa, σ ≈ 0.02 kg/sec2) waves at wavelengths of 10−4 m and below
(with frequencies of 50 kHz and above) are of purely capillary type, while
for wavelengths above 1 m (and frequencies below 10 Hz) the gravity char-
acter dominates; this regime is, thus, irrelevant for usual ferrogel samples.
In between, for typical wavelengths of 10−2 m and frequencies of 100 - 1000
Hz the elastic nature of the wave is prevailing. This scenario also applies to
isotropic ferrogels in the absence of a field. The effect of a normal external
magnetic field on the surface is a destabilizing one [2]. From Eq.(20) it is
evident that an external field leads to an effective reduction of the surface
stiffness (provided by surface tension, gravity or elasticity) and decreases the
frequency (squared) of the propagating waves in all regimes by ∼ M2

0 k2. If
the field is large enough, this reduction is the dominating effect and can lead
to ω = 0 and thus, to the breakdown of propagating waves. In the next
section we will show that this is indeed related to the Rosensweig instability.

5. Rosensweig instability

Eq.(20) can be slightly reinterpreted: It is an equation for that external field
strength (or M0), where a surface disturbance (8) with wavevector k and
frequency ω0 relaxes to zero or grows exponentially for λ negative or positive,
respectively. For λ = 0 such a surface disturbance is marginally stable (or
unstable) against infinitesimal disturbances, since Eq.(20) has been obtained
by linearizing the dynamic equations and the boundary conditions about the
ground state. The function M0 still depends on ω0 and k and has to be
minimized with respect to these quantities in order to get the true instability
threshold.

First, it can be shown analytically that for the two special cases, µ2 = 0
(ferrofluid) and ν2 = 0 (ferrorubber), only the stationary solution ω0 = 0
is possible at onset. For the general case numerical calculations show the
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absence of an oscillatory instability with ω0 6= 0 at onset.
For ω0 = 0 the linear threshold condition is completely independent of ν2

[9] and simplifies to

M2
0 =

1 + µ

µ

(
σk +

ρg

k
+ 2µ2

)
. (21)

Minimizing with respect to k leads to the critical wavevector

kc =
√

ρg

σ
(22)

and the critical field

M2
c =

1 + µ

µ
(2
√

σρg + 2µ2) . (23)

Obviously, kc is identical to that in ferrofluids and not dependent on elasticity,
but the critical field is enhanced by elasticity. The latter finding is no surprise,
since elasticity increases the surface stiffness. For typical polymer networks
with a shear elastic modulus of 1 kPa, the elastic contribution to Mc exceeds
the surface tension contribution roughly by a factor of 5 and elasticity is
the dominating factor. Critical values of 100 - 200 Gauss for M0 have to be
expected for typical samples. The critical wavelength is in the range of 1
cm, which for surface waves lies in the elasticity dominated regime. Thus, if
the system cannot choose the optimal (critical) wavelength, but is fixed to
a prescribed one like in many surface wave scattering experiments, the field
necessary to destabilize the surface wave is about Mc in the elastic regime
and higher in the other ones, where k > kc or k < kc. For very soft gels with
µ2 < 10 Pa, the influence of the elasticity is rather negligible and ordinary
ferrofluid behavior is found.

The present linear stability analysis has various limitations. First, it can-
not decide whether the instability is forward and continuous, or discontinuous
and backward. Only in the former case the linear stability analysis gives the
actual threshold. A linear treatment also cannot give the actual spatial pat-
tern, since a linear superposition of different k orientations (|k| = kc) allows
for various types of patterns. Finally, the amplitude of the spikes emerging
just above threshold is undetermined by the linear stability analysis. All
these questions have to be dealt with in future nonlinear considerations.
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