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Abstract

We report theoretical and numerical results on convection for a magnetic fluid in a viscoelastic carrier liquid. The viscoelastic
properties is given by the Oldroyd model. We obtain explicit expressions for the convective thresholds in terms of the parameters
of the system in the case of idealized boundary conditions. We also calculate numerically the convective thresholds for the case of
realistic boundary conditions. The effect of the Kelvin force and of the rheology on instability thresholds for a diluted suspensions
are emphasized.
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1. Introduction

Ferrofluids are magnetic fluids formed by a stable colloidal
suspension of magnetic nanoparticles dispersed in a carrier liq-
uid. Without an applied external magnetic field the orienta-
tions of the magnetic moments of the particles are random re-
sulting in a vanishing macroscopic magnetization (magnetic
disorder). An external magnetic field, however, easily orients
the particle magnetic moments and a large (induced) magne-
tization is obtained. There are two main features that distin-
guish ferrofluids from ordinary fluids, the polarization force and
the body couple. In the last decades much efforts have been
dedicated to the study the phenomenon of convective mech-
anism in ferrofluids. In addition, heat transfer through mag-
netic fluids, in particular, have been one of the leading area
of scientific study due to its technological applications [1].
The ferrofluid convection has application in high-power capac-
ity transformer system where the ferrofluid is used as a ma-
terial in the core as well as a coolant in the transformer. To
activate convective cooling, knowledge of concentration gradi-
ent, which will induce convection, is required. An important
application of ferrofluids lies in the biomedicine area where
the carrier liquid is blood [2, 3, 4, 5, 6] which is known to
have also special rheological proprieties [7, 8, 9]. In addition,
when a magnetic field is applied, the ferrofluid can exhibit
additional rheological properties such as magneto-viscosity,
adhesion properties, non-Newtonian behavior, among others
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Hence, a detailed
study of viscoelastic magnetic fluids is quite important and in
order.
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The first continuum description of magnetic fluids was
given by Neuringer and Rosensweig [21]. Later, Finlayson [22]
studied the convective instability of a magnetic fluid for a fluid
layer heated from below in the presence of a uniform vertical
magnetic field. He discussed the cases of both, shear free and
rigid horizontal boundaries using the linear stability method.
Gotoh and Yamada [23] carried out a similar study by as-
suming the fluid to be confined between two magnetic pole
pieces. A weakly nonlinear analysis in a strong external field
was considered by Blennerhassett et al. [24]. The convective
instability for a rotating layer in a magnetic fluid has been stud-
ied by Gupta and Gupta [25] and by Venkatasubramanian and
Kaloni [26]. An amplitude equation for the stationary convec-
tion with idealized boundary condition was derived in Ref.[27].
The Küppers-Lortz instability for the case of a rotating mag-
netic fluid was formulated by Auernhammer and Brand [28].
Ryskin and Pleiner [29], using nonequilibrium thermodynam-
ics, have derived a complete set of equations to describe fer-
rofluids in an external magnetic field. This description is made
in terms of a binary mixture, where the magnetophoretic ef-
fect, as well as magnetic stresses, have been taken into ac-
count in the static and dynamic parts of the ferrofluid equations.
When the magnetophoretic effect can be neglected, we have an-
alyzed the thermal convection for rotating ferrofluids. For ide-
alized boundary condition for the typical conductive state in
the stationary case an analytical expression was found for the
Rayleigh number as function of control parameters [30]. Re-
cently, the weakly nonlinear analysis for stationary convection
in a rotating magnetic binary mixture was studied [31]. Other
effects, such as the buoyancy-surface tension effects, nonuni-
form thermal gradients, magnetization constitutive equations,
etc., have also been studied in Refs. [32, 33, 34, 35, 36, 37, 38].

Viscoelastic properties of fluids can be described by a con-
stitutive equation, which relates the stress and strain rate ten-
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sors. Finding this relation, which should generalize the linear
dependence characteristic of Newtonian fluids, is the main pur-
pose of the science of Rheology. The simplest constitutive equa-
tion capable of describing realistically the viscoelastic proper-
ties is given by the so-called Oldroyd model [39]. In this model,
the stress tensor is decomposed into both a polymeric contribu-
tion and a solvent contribution. Studies of convection in such
fluids have been performed by various authors for different
cases, either with free-free or rigid-rigid boundary conditions
[40, 41, 43, 44, 45, 46, 47, 42, 48, 49, 50, 51, 52, 53, 54, 55].
It has been found that, besides the usual stationary convection,
oscillatory states can also be obtained at onset. Which type of
convection - stationary or oscillatory appears - first will de-
pend on the values of the rheological parameters. Experimental
measurements of oscillatory convection in viscoelastic mixtures
were reported by Kolodner [56] in a DNA suspension; and theo-
retical studies of the convection thresholds for binary viscoelas-
tic mixtures in different types of fluids, can be found in Refs.
[57, 58, 59, 60, 61]. Recently, studies on stationary convection
in viscoelastic magnetic fluid have been done [62, 63].

The purpose of the present paper is to analyze the influ-
ence of the viscoelasticity in convective thresholds in magnetic
fluid, in particular, where the separation ratio and magnetic sep-
aration ratio are not too large the simple fluid approximation
can be used [29]. To this aim an Oldroyd viscoelastic magnetic
fluids heated from below is considered. The description of the
system involves many parameters whose values have not yet
been determined accurately. Therefore, we are left with some
freedom in fixing the parameter values. In order to be as ex-
haustive as possible, we will analyze the linear regime for two
different limiting cases of boundary condition i.e. the free−free
(FF) and the rigid−rigid (RR) boundary conditions. In the first
case (FF), one can explicitly calculate the threshold for con-
vection in function of the parameters of the fluid. In addition,
we have further checked that we retrieved the previous results
obtained in simplified situations by other authors. In the case
of realistic boundary conditions (RR), an analytical calculation
is not tractable and we numerically solve the linearized system
using a collocation spectral method in order to determine the
eigenfunctions and eigenvalues and consequently the convec-
tive thresholds. The paper is organized as follows: In Sec. 2, the
basic hydrodynamic equations for viscoelastic magnetic fluid
convection are presented. In Sec. 3 the linear stability analysis
of the conduction state is performed. Finally, conclusions are
presented in Sec. 4.

2. Basic Equations

We consider a layer of incompressible magnetic fluid in a
viscoelastic carrier liquid, of thickness d, parallel to the xy-
plane, with very large horizontal extension in a gravitational
field g and subject to a vertical temperature gradient. The mag-
netic fluid properties can be modeled as electrically noncon-
ducting superparamagnets. The magnetic field H is assumed to
be oriented in a direction parallel to the ẑ axis. It would be ho-
mogeneous, if the magnetic fluid were absent. Let us choose the
z-axis such that g = −gẑ and that the layer has its interfaces at

Figure 1: A vertical cut through the fluid layer. Note the y-axis point into the
xz-plane.

coordinates z = −d/2 and z = d/2. A static temperature dif-
ference across the layer is imposed, T (z = −d/2) = T0 +4T
and T (z = d/2) = T0. The set-up of the problem is drawn in
Fig. 1. Under the Boussinesq approximation, the balance equa-
tions read as

∇ · v = 0, (1)

ρ0dtv = −∇peff +∇ · τ + ρg + M · ∇H, (2)
cv,H
T0

dtT + χT H0 · dtH = κ̄∇2T + ϑH0 · ∇2H, (3)

where dtf = ∂tf+v·∇f is the total derivative, v is the velocity
field, peff is the effective pressure which contains the static
hydrodynamic pressure and the gradient term of the magnetic
force, ρ is the mass density, ρ0 is a reference mass density, τ is
the extra stress tensor, M is the magnetization field, cv,H is the
specific heat capacity at constant volume and magnetic field,
T is the temperature, T0 is a reference temperature, χT is the
pyromagnetic coefficient and κ̄ is the thermal diffusivity, and
ϑ ∝ χH/ρ0, being χH the magnetic susceptibility along the
field.

For the total density we use the following linear state equa-
tion

ρ = ρ0(1− αT4T + αHH0 · 4H) (4)

where αT and αH are the thermal and the magnetic expansion
coefficients, respectively. In the following, we denote 4f =
f − f0. In addition, for the magnetic field H and the magnetic
induction B, we suppose that the system is not conductive, i.e.,
it is governed by Maxwell equations

∇×H = 0, (5)

∇ · B = 0. (6)

Furthermore, we assume a linear relationship between these
fields B = H + M and introduce the scalar magnetic potential
H = −∇φ to fulfill Eq. (5). The magnetization field is assumed
to follow instantaneously the external field M = M(T,H)Ĥ
with the usual phenomenological equation of state

M(T,H) = M0 − χT4T + χHH0 · 4H (7)

where4 denotes deviations from the ground state.
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A constitutive equation relating the extra stress tensor τ and
the shear rate has also to be introduced. In a Newtonian incom-
pressible fluid, the extra stress tensor is related to the strain ten-
sor via the Newton law, τ = 2νD, where D is the symmetric
part of the velocity field gradient and ν is the kinematic viscos-
ity. For complex polymeric fluids, a more general constitutive
relation between stress and strain rate τ = τ (D) is necessary
to describe the behavior. This last relation is subjected to sym-
metry restrictions. One type of constitutive relation that satisfies
these symmetry requirements and that may be further justified
by the kinetic theory of dumbbells has been proposed by Ol-
droyd [39]. This family of models, developed in the fifties of
the last century, include particular cases that are widely used for
different kinds of polymeric solutions. In the Oldroyd model,
the constitutive equation is written as

(1 + λ1Dt)τ = 2ν(1 + λ2Dt)D, (8)

where ν is the static viscosity, λ1 is the relaxation time, and λ2

is the retardation time, the last two parameters characterize the
viscoelastic time scales. For thermodynamic stability reasons
both, λ1 and λ2, are taken to be positive. The symbol Dt in Eq.
(8) denotes an invariant (”frame-indifferent”) time derivative,
defined as

Dtτ = dtτ + τ ·W −W · τ + a(τ ·D + D · τ ), (9)

where W is the skew-symmetric part of the velocity field gra-
dient; also a is a phenomenological parameter that lies in the
range −1 to +1. For a = −1, one gets the lower convected
Jeffrey‘s model (Oldroyd B), for a = 0 one gets the so-called
corotational Jeffrey‘s model, and a = 1 describes the upper
convected Jeffrey‘s model (Oldroyd A). Let us comment that
the coefficient a is not completely independent of the other rhe-
ological parameters [68]. Some limiting cases are λ2 = 0 that
leads to a Maxwellian fluid, while a Newtonian fluid requires
both λ1 = 0 and λ2 = 0.

Let us now analyze the boundary conditions (BCs) of the
system. A static temperature difference across the layer is im-
posed, T (z = −d/2) = T0 + 4T and T (z = d/2) = T0;
as the magnetic BCs we use the typical continuity conditions
of the Maxwell equations, i.e., n × (Hin − Hex) = 0 and
n · (Bin − Bex) = 0, where n is a unit vector normal to
the boundaries. Moreover, for the velocity field we will con-
sider both Free-Free (FF) and and Rigid-Rigid (RR) interfaces.
Hence, from Eqs. (1)−(8) and using these boundary conditions
the conductive basic rest state is given by

vcon = 0, (10)
Tcon(z) = T̄ − βz, (11)
Hcon(z) = H0(1 + λβz), (12)

where β = (4T/d) and λ = χT /(1+χH). After some algebra,
the equations for the dimensionless perturbations can be written
as

∇ · v = 0 (13)

P−1dtv =−∇peff +∇ · τ +RaΣ (14)

(1 + ΓDt)τ = (1 + ΓΛDt)D (15)

dt(θ −M4∂zφ) = (1−M4)w +∇2θ (16)

(∂zz +M3∇2
⊥)φ− ∂zθ = 0 (17)

∇2φext = 0 (18)

where {v, θ, φ} are the dimensionless velocity perturbation, the
temperature perturbation and the dimensionless magnetic po-
tential perturbation, respectively; and where Σ = Π1(θ, φ)ẑ +
M1θ∇(∂zφ) with Π1 = (1 + M1)θ − (M1 − M5)∂zφ and
∇2
⊥ = ∂xx +∂yy. In Eqs. (13)-(18), the following groups of di-

mensionless numbers have also been introduced: (a) (pure flu-
ids) The Rayleigh number, Ra = αT g4Td3/κν, accounting
for buoyancy effects; and the Prandtl number, P = ν/κ, re-
lating viscous and thermal diffusion time scales. (b) (magnetic
fluid) The strength of the magnetic force relative to buoyancy
is measured by the parameter M1 = βχ2

TH
2
0/(ρ0gαT (1 +χ));

the nonlinearity of the magnetization,M3 = 1−(χHH
2
0 )/(1+

χ), a measure of the deviation of the magnetization curve
from the linear behavior M0 = χH0; the relative strength
of the temperature dependence of the magnetic susceptibil-
ity M4 = χ2

TH
2
0T0/cH(1 + χ); and the ratio of magnetic

variation of density with respect to thermal buoyancy M5 =
αHχTH

2
0/(αT (1 + χ)). (c)(viscoelastic fluid) The Deborah

number, Γ = λ1κ̄/d
2, and the ratio between retardation and

stress relaxation times, Λ = λ2/λ1. Since λ1,2 are positive, so
are Γ and Λ. For Γ = 0 one recovers the Newtonian fluid while
for Λ = 0 the Maxwellian fluid is obtained.

Let us comment on the numerical values of the parame-
ters; the parameter Ra can be changed by several orders of
magnitude, while a typical value for P in viscoelastic fluid is
P ∼ 100−103. The magnetic numbers have the following order
of magnitude M1 ∼ 10−4 − 10, M3 & 1, M4 ∼ M5 ∼ 10−6

for typical magnetic field strengths [29, 30]. For aqueous sus-
pensions it is suggested that the Deborah number is about
Γ ∼ 10−3 − 10−1 [56, 64, 65, 66], but for other kinds of
viscoelastic fluids the Deborah number can be of the order of
Γ ∼ 103. Unfortunately, no experimental data are available for
either the retardation or the stress relaxation times, so we treat
Λ as arbitrary in the range [0, 1]. In addition, the above set of
equations is still unnecessarily complicated. We will simplify
it first by neglecting M4, which is a common simplification in
the description of instabilities in ferrofluids [5]. SinceM4 is not
related to viscoelastic effects, which we are interested in here,
we expect not to loose any reasonable aspect of the problem un-
der consideration. The same is true for the coefficient M5. So,
the values of {M4,M5} in the following analysis are taken to
zero. Thus, we are left with two magnetic field dependent ef-
fects characterized by the parameters {M1,M3}. The first one
denotes the influence of the Kelvin force and is expected to have
the dominant influence on the convection behavior. The second
parameter, M3 is different from 1 due to the intrinsic nonlin-
earity of the magnetization and is only a weak function of the
external magnetic field. In the next section, we study the stabil-
ity of the conduction state.
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3. Linear Stability Analysis

In order to calculate the linear stability, we only need the
linear parts of Eqs. (13)-(17). This is readily done by neglecting
the advective terms v · ∇ and replacing Dt by ∂t. Moreover,
the effective pressure and two components of the velocity field
could also easily be eliminated by applying the curl (∇×...) and
double curl (∇×∇×...) of the Navier-Stokes equation and then
considering only the z-component of the resulting equations, w
(i.e. the vertical velocity component). After some algebra, the
linear equations read

P−1∂t∇2w = ∇2(∇ · τ )z +Ra∇2
⊥LΣ (19)

(1 + Γ∂t)(∇ · τ )z = (1 + ΓΛ∂t)∇2w (20)

∂tθ = w +∇2θ (21)

(∂zz +M3∇2
⊥)φ− ∂zθ = 0 (22)

where LΣ = (1 + M1)θ −M1∂zφ. We remark that Eqs. (19)
and (20) can be combined in order to get a single equation for
w . One can define the vector field u = (θ, φ, w)

T that contains
the important variables for the linear analysis. Using standard
techniques [67], the spatial and temporal dependencies of u are
separated using normal mode expansion

u(r, t) = U(z) exp[ik · r⊥ + st], (23)

being U = (Θ,Φ,W )
T , where k is the horizontal wavenumber

vector of the perturbations, r⊥ is the horizontal vector position
and where s = σ+iΩ denotes the complex eigenvalues; σ is the
growth factor of the perturbation, and Ω its frequency. Using the
ansatz (23), Eqs. (19)-(22) are reduced to the following coupled
ordinary differential equations

D2Θ = ξ1Θ−W (24)

D2Φ = ξ2Φ +DΘ (25)

D4W = ξ3D
2W − ξ4W +Ra(ξ5Θ− ξ6DΦ) (26)

where Dnf = ∂nz f , ξ1 = k2 + σ, ξ2 = M3k
2, ξ3 = 2k2 +

sQ/P , ξ4 = k2
(
k2 + sQ/P

)
, ξ5 = k2 (1 +M1)Q and ξ6 =

k2M1Q such that Q = (1 + sΓ)/(1 + sΛΓ). In the following
two subsections, we analyze the results of the linear stability
analysis for the two considered boundary conditions.

3.1. Idealized Boundary Conditions (FF)

In order to solve the set of differential equations analyti-
cally, the following boundary conditions

DΦ = Θ = D2W = W = 0, (27)

are imposed at z = ±1/2. The z-dependence of the eigenfunc-
tions of the stability problem can then be described by simple
sine and cosine functions. The eigenvalue problem produces a
dispersion relation

P(s) ≡ a0 + a1s+ a2s
2 + a3s

3 = 0, (28)

where aj are functions of the system parameters

a0 = Pq6%− k2P
(
%+ k2M1M3

)
Ra (29)

a1 = q4(1 + ζ)%− k2ΓP
(
%+ k2M1M3

)
Ra (30)

a2 = q2%
(
1 + q2Γ[1 + PΛ]

)
(31)

a3 = q2%Γ (32)

where ζ = P (1 + q2ΓΛ) with q2 = k2 + π2 and % = M3k
2 +

π2. Eq. (28) allows for an analytical expression of the Rayleigh
number as function of {s, k}

Ra =
q2%

(
q2 + s

) (
s+ Γs2 + Pq2J

)
k2 (k2M1M3 + %)PT

, (33)

where J = 1 + sΛΓ and T = 1 + sΓ. There are two com-
mon particular bifurcation cases, the stationary bifurcation with
s = 0, and the oscillatory instability that occurs when s = iΩ
with Ω finite and real. For specific values of the parameters,
the critical Ra values of these two instabilities, Rasc and Raoc,
respectively, can be equal constituting a codimension-2 bifur-
cation. Let us consider first the stationary case.
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Figure 2: (Color online) Critical stationary Rayleigh number, Rasc, as a func-
tion of M1 at M3 = 1.1. The inset shows Rasc as a function of M3 at
M1 = 10.

3.1.1. Stationary Bifurcation
In the stationary case (s = 0), we find the marginal stability

curve between the Rayleigh number and the wavenumber of the
perturbation

Ras =
%q6

k2 (k2M1M3 + %)
(34)

to be identical to that for a simple ferrofluid [22]. Hence, in
this case, the viscoelastic effects do not appear at linear or-
der. The minimum of the marginal curve (34) (∂kRas = 0)
gives the critical wave-number ksc and, subsequently, the crit-
ical Rayleigh number, Rasc = Ras(ksc), of the most unstable
perturbation. Fig. 2 shows the magnetic field dependence of the
linear threshold, where the field is represented by M1 ∼ H2.
We observe that Rasc decreases for strong fields indicating the
destabilizing effect of a magnetic field. The threshold also de-
creases as function of M3 (inset), although values of M3 > 1.5
are rather unrealistic.
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Figure 3: 3D phase diagram showing where Ω is non-vanishing as a function of
the {k,Γ,Λ} parameters.
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Figure 4: (Color online) Frequency of the critical perturbation, Ωc, as a function
of Γ for different values of M1 at P = 10, M3 = 1.1 and Λ = 0.5. The
different values ofM1 are represented by different symbols from top to bottom
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3.1.2. Hopf Bifurcation
We now discuss the oscillatory bifurcation. For a nonzero

real frequency Ω the eigenvalue Eq. (28) is complex and con-
stitutes two independent conditions for its real and imaginary
parts, separately. Being a cubic equation, one can easily find
the two solutions Ω2 = a0/a2 and Ω2 = a1/a3, which are
represented by

Rao
Ras

= Λ +
1− Λ

q4

(
q2

Γ
− q2

ΓΞ
+
q4

Ξ

)
− Ω2

Pq4
(35)

where

Ω2 =
q2PΓ(1− Λ)− (1 + P )

Γ2(1 + PΛ)
, (36)

with Ξ = 1 + (ΓΩ)
2. For real Ω its square has to be positive.

Obviously, this cannot be achieved at all for Newtonian fluids
and poses an lower limit on the Deborah number for Oldroyd
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Figure 5: (Color online) Critical oscillatory Rayleigh number, Raoc, as a func-
tion of Γ (upper part) and as a function of Λ (lower part) for different values of
M1 at P = 10 and M3 = 1.1. The different values of M1 are represented
by different symbols from bottom to top M1 = {10, 5, 2, 1, 0.5, 0.1} =
{�, •,N,H,�, ∗}; note the logarithmic scale of the ordinate.

(and Maxwell) fluids,

Γ ≥ (1 + P )
/(
Pq2(1− Λ)

)
(37)

which also means Λ must not reach the value 1. In terms of the
original parameters it means that λ1 has to exceed λ2 by a finite,
q2 dependent amount. Note this existence condition does not
depend on the magnetic field strength, although, of course,Rao
depends on it through Ras. Fig. 3 shows a 3D phase diagram
for the existence of oscillatory convection as a function of the
parameters {k,Γ,Λ}.

The critical wave number koc follows from the condition
∂kRao = 0 and replacing this value in Eqs. (35) and (36) the
critical Rayleigh number and frequency are obtained.

Fig. 4 shows the critical frequency, Ωc, as a function of Deb-
orah number, Γ, for different values of the parameter M1. One
observes that Ωc reaches its maximum value for intermediate
values of Γ. This maximum increases when M1 increases. In-
terestingly enough, one can get an approximate power law for
the maximum critical frequency as a function of M1. It is given
by the formula Ωmax

c ≈ aM b
1 where {a, b} are parameters that

are numerically fitted. For M3 = 1.1 and P = 10, one gets
{a, b} = {5.44, 0.0628}. The upper part of Fig. 5 displays the
critical oscillatory Rayleigh number, Raoc, as a function of the
Deborah number, Γ for different values of M1. One observes
that Raoc decreases when Γ increases and reaches an asymp-
totic value for Γ >> 1. The influence of the parameter M1 is
similar to that of Γ. We have determined the asymptotic val-
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Figure 6: (Color online) The codimension-2 bifurcation line, Rasc = Raoc,
that separates the stationary instability region (above) from the oscillatory one
(below) for different values of M1. Parameters P = 10 and M3 = 1.1 are
held constant. The different values ofM1 are represented by different symbols,
from top to bottom M1 = {10, 1, 0.1} = {�,N, •}

ues Γ >> 1 of Raoc in the range M1 ∈ [0, 10] where they
follow an exponential decay law Raaoc = a + b exp(−cM1),
with a, b, c parameters to be fitted. For P = 10 and M3 = 1.1,
one gets {a, b, c} = {60.25, 258.4, 0.359}. Fig. 5 (lower part)
shows Raoc as a function of the ratio between the retardation
and relaxation times, Λ, again for different values of M1. We
observe that Raoc increases when Λ is increased.

We remark that the onset of the oscillatory instability (not
possible for Newtonian fluids) strongly depends on the vis-
coelastic properties, in particular on the Deborah number. In-
deed for small Deborah numbers the threshold is unrealistically
high, but for large one it is drastically reduced and the oscilla-
tory instability usually precedes the stationary instability, i.e. it
occurs at a lower Rayleigh number.
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k oc
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Λ=0.1
Λ=0.5
Λ=0.9

Figure 7: The critical wavelength koc as a function of Γ for Λ = 0.05 (solid
black), = 0.1 (dashed red), = 0.5 (dotted green), and = 0.9 (dashed-dotted
blue). The horizontal dotted line indicates ksc for the stationary instability. The
rest of the parameters have been fixed to P = 10, M1 = 0.1, M3 = 1.1, and
χb = 1.

3.1.3. Codimension-2 Bifurcation
There exists a range of parameters where the critical oscil-

latory and stationary Rayleigh numbers have the same value,

Rasc = Raoc. This is possible due to the non-Newtonian prop-
erties of the fluid layer. Fig. 6 shows this line in the Γ−Λ space
that divides the stationary instability region (above) from the os-
cillatory one (below) for different values of M1. The influence
of M1 is rather weak, since Raoc has a similar M1 dependence
as Rasc. Numerically, one can fit the relationship between Γ
and Λ along this line by the approximate formula

Γ = a

[
1− exp

(
−Λ

b

)]
+ cΛd (38)

where {a, b, c, d} are fit parameters that depend on
{P,M3,M1}. For example, if we take P = 10, M3 = 1.1 and
M1 = 0.1, one gets {a, b, c, d} = {0.908, 0.17, 0.025, 5.51}.
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Figure 8: Same as Fig. 7 for the critical frequency Ωc. The log-log plot reveals
a slope of −1/2 (dotted line) for Γ >> 1.

3.2. Realistic Boundary Conditions (RR)

The use of free–free boundary conditions at the two hori-
zontal boundaries is a useful mathematical simplification but is
not completely physically sound. The correct boundary condi-
tions for a viscous or viscoelastic fluid is to impose

W = DW = Θ = 0, (39)

at the two horizontal rigid boundaries. In addition, in the case
of a finite magnetic permeability χb of the rigid boundaries, the
scalar magnetic potential must satisfy the following BCs

(1 + χb)DΦ± kΦ = 0, (40)

at z = ±d/2, respectively [22]. Note that in the limit when
χb tends to infinity, Eqs. (40) tend to DΦ = 0. In order to
solve Eqs. (24)-(26) with these realistic boundary conditions,
we use a spectral collocation method. Spectral methods ensure
an exponential convergence to the solution and are the best
available numerical techniques for solving simple eigenvalue
– eigenfunction problems. Here, we follow the technique of
collocation points on a Chebyschev grid as described in [69].
The collocation points (Gauss-Lobato) are located at height
zj = cos(jπ/N) where the index j runs from j = 0 to j = N .
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Figure 9: Same as Fig. 7 for the critical Rayleigh numberRaoc. The horizontal
dotted line indicates Rasc for the stationary instability.

Note that here the z-variable ranges from −1 to +1 and one
has therefore to rescale Eqs. (24)-(26) accordingly, because the
physical domain is defined in the range (−1/2,+1/2).

We use N = 8 collocation points in the vertical direction,
for which the equations and the boundary conditions are ex-
pressed. We have checked that usingN = 10 collocation points
only modifies the fourth or fifth significant digit of the result. By
using the collocation method, the set of differential equations
(24)-(26) is transformed into a set of linear algebraic equations.
The eigenfunctions (Θ(z),Φ(z),W (z)) are transformed into
eigenvectors defined at the collocation points. The Rayleigh
number is again used as the eigenvalue of the problem. After
this stage of discretization, one is left with a classical general-
ized eigenvalue–eigenvector problem that can easily be solved
using the Matlab routine ”eig” [70].

In the case of the oscillatory instability considered here, one
has to make sure that the Rayleigh number (as being a physi-
cal quantity) is a real number by choosing a correct value for
Ω. Therefore, one is left with a triplet {Ra, k,Ω} that defines a
marginal stability condition (for a fixed value of the horizontal
wavenumber k). This procedure is repeated for several values of
k leading to the marginal stability curve Ra versus k. The min-
imum of this curve gives Raoc and koc, and the corresponding
value for the critical frequency Ωc.

Figures 7-9 show the critical quantities as functions of the
viscoelastic properties of the liquid. In all three figures it is
manifest that for small values of the Deborah number Γ the os-
cillatory instability disappears, with the threshold increasing for
increasing Λ. This is in full agreement with the analytical limit,
Eq. (37), obtained for idealized boundary conditions. For inter-
mediate values of Γ, one observes in Fig. 9 the codimension-
2 points, where the stationary and oscillatory convection have
the same threshold. These points are shifted to higher Γ values
when Λ is increased, again in agreement with the FF case (Fig.
6). For large values of the Deborah number, Γ >> 1, the criti-
cal values show a distinctive asymptotic behavior. In particular,
koc → ksc, the critical wavevector tends to the value of the sta-
tionary case. The oscillatory threshold Raoc → ΛRasc reaches
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Figure 10: The critical parameters Rayleigh number Raoc (black squares) and
Ωc (red circles) as a function of Λ for a very large fixed value of the Deborah
number Γ = 105. The other parameters are P = 10, M1 = 0.1, M3 = 1.1
and χb = 1.

a constant value that is by the factor Λ smaller than the station-
ary one. This proportionality with Λ is also apparent in Fig. 10.
Finally, the critical frequency goes to zero, Ωc → A/

√
Γ, with

an exponent of −1/2. The pre-factor A depends on the Debo-
rah number. Figure 10 displays the latter dependence for a very
large fixed value of Γ = 105 in the asymptotic regime. There
is, however, no simple relation between Ωc and Λ.
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Figure 11: The critical wavevector koc as a function ofM1 ∼ H2 representing
the external field dependence. The other parameters are M3 = 1.1, P = 10,
Γ = 1, Λ = 0.1, and χb = 1.

For a ferrofluid an external magnetic field is an important
means of manipulating its behavior. The field dependence of
the critical quantities comes mainly through M1, which is di-
rectly proportional to the field squared, and to a much lesser
extent throughM3, which, therefore, has been kept constant for
the fields considered here. In Figs. 11-13 the influence of an
external field on the critical quantities is shown. koc and Ωc in-
crease slightly with the magnetic field. The threshold decreases
rather strongly with the field and shows an asymptotic behav-
ior Raoc ∼ 1/M1 for M1 >> 1. As in the stationary case, an
external field is destabilizing.
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Figure 12: Same as Fig. 11 for the critical frequency Ωc

Figure 13: Same as Fig. 11 for the critical Rayleigh number Raoc. The log-log
plot reveals the slope −1 (dotted line) for M1 >> 1.

We have examined the influence of the Prandtl number on
the critical quantities, Raoc, Ωc, and koc (Fig.14). While koc is
rather insensitive to P , the critical frequency increases strongly,
when P increases from 1 to 100. Even more interesting is the
non-monotonous behavior of the threshold Raoc, which shows
a minimum around P ≈ 7. There is no simple physical expla-
nation for this. For large Prandtl numbers the critical quantities
reach asymptotically constant values. This regime is only ob-
tained at rather high values (P & 200 for the present case). This
is quite different from the case of Newtonian fluids, where, as a
rule of thumb, nothing changes anymore for 10 < P →∞.

Finally, we show that the use of the realistic magnetic
boundary conditions (40) and, in particular, a finite value of the
magnetic susceptibility χb of the rigid boundaries does not con-
siderably change the critical values Raoc and Ωc as is demon-
strated in Fig. 15. Both, Raoc and Ωc, increase by only a few
percent, when χb increases from zero to infinity, therefore jus-
tifying a posteriori the use of the simpler boundary condition
DΦ = 0.
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Figure 14: The critical parameters Raoc, Ωc, and koc as a function of the
Prandtl number P . The black solid line refers to Raoc (left scale), the red
dashed to Ωc and the green dotted to 10koc (right scale). The other parame-
ters are fixed at M1 = 0.1, M3 = 1.1, Γ = 0.1, Λ = 0.1, and χb = 1.
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Figure 15: The critical Rayleigh number Raoc (black solid line, left scale) and
Ωc (red dashed line, right scale) as a function of the magnetic susceptibility χb

of the rigid boundaries. The other fixed parameters are as in Fig. 14.

4. Final Remarks

In the present work, Rayleigh-Bénard convection in a mag-
netic viscoelastic liquid is studied. The stability thresholds for
both, the stationary and the oscillatory convection, have been
determined. Two different boundaries conditions for the veloc-
ity field were analyzed, the so-called fee-free and rigid-rigid
ones. For the former the results of Finlayson [22] for the sta-
tionary convection have been re-obtained. In addition, we have
provided analytical formula for the oscillatory convection. For
weakly viscoelastic fluids the critical Rayleigh number for the
oscillatory convection is much higher than that for the station-
ary one, while for high Deborah numbers the oscillatory in-
stability always precedes the stationary instability. In this pa-
per, we have also calculated the range of parameters where the
codimension-2 bifurcation appears. In the case of rigid-rigid
boundary conditions, the convection thresholds are calculated
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numerically by the spectral method. The technique of colloca-
tion points (Gauss-Lobato) as described in [69] was used.

Due to the presence of various destabilizing effects, i.e.
buoyancy and magnetic forces, and of additional relaxation
channels due to the Oldroyd model, the discussion of the sta-
bility curves becomes rather intricate. An oscillatory instabil-
ity, whose critical frequency is a rapidly varying function of the
Deborah number, is competing with the stationary one. As a re-
sult, the codimension-2 bifurcation line, separating those two
instabilities, strongly depends on the structure of the Oldroyd
model and its relaxation times.

Let us finally comment that, very often, ferrofluids show
a finite separation ratio and a finite magnetic separation ratio
and therefore require a binary mixture description. However,
for materials where the separation ratio and magnetic separation
ratio are not too large the simple fluid approximation is valid
[29]. The present work is based on this last approximation. A
detailed study on the oscillatory bifurcation for magnetic binary
mixtures is still in progress.
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