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Abstract

We report theoretical and numerical results on thermal convection of a magnetic fluid in a viscoelastic carrier
liquid. The viscoelastic properties are described by a general nonlinear viscoelastic model that contains as
special cases the standard phenomenological constitutive equations for the stress tensor. In order to explore
numerically the system we perform a truncated Galerkin expansion obtaining a generalized Lorenz system
with ten modes. We find numerically that the system has stationary, periodic and chaotic regimes. We
establish phase diagrams to identify the different dynamical regimes as a function of the Rayleigh number
and the viscoelastic material parameters. c© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Convection in fluids driven by thermal gradients have been at the very origin of the field of nonlinear
physics and pattern formation [1]. Very early on, investigations have been extended to e.g. binary mixture,
non-Newtonian, and magnetic fluids. In such systems, new channels for dissipating energy (e.g. Soret effect),
additional time scales (e.g. stress relaxation) and additional driving forces (e.g. magnetic field) lead to new
phenomena at the instability thresholds and the pattern forming processes, above. Among the many examples
we mention investigations of thermal convection in non-Newtonian binary mixtures [2–9], in non-Newtonian
magnetic fluids [10–14], and in binary magnetic fluids [15, 16].

The technological applications of magnetic fluids [17] and their biomedical importance [18–22] is closely
related to non-Newtonian properties, which are either magnetic field-induced [23–25] or due to the carrier
liquid [26–32] (e.g. in blood [33–35]). In this manuscript we are particularly interested in the interplay of
nonlinear non-Newtonian with magnetic properties with respect to thermal convection. Despite the black
appearance of most ferrofluids, thermal convection experiments [36–47] are a valuable source to investigate
the nonlinear properties of those materials.

To describe the nonlinear non-Newtonian aspects we will use a general hydrodynamic description of
nonlinear viscoelasticity (PLB) [48] in terms of a dynamic equation for the (nonlinear) strain tensor. Using
the standard hydrodynamic procedure including all symmetry and thermodynamic requirements, one can
derive the form of the viscoelastic equations, rather than postulating them phenomenologically. PLB is
applicable to arbitrarily large deformations, rotations and flows [49] and contains the solid limit, correctly.
It contains as special limits typical visco-elastic models, such as Maxwell, Oldroyd, Giesekus, Leonov and
KBKZ [50]. However, it overcomes the drawback of those popular models that use quasi-linear constitutive
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relations between stress and strain rate tensors. As a result, it is no longer sufficient to restrict ourselves to
the second harmonic approximation when the convection problem is solved numerically.

The magnetic aspects of the fluid are taken as those of a non-conducting ferrofluid including magnetic
buoyancy, pyromagnetic behavior, and nonlinear magnetization in the magnetostatic limit [15]. The magnetic
fluid is considered here as a one-component fluid neglecting all binary mixture effects. We also focus on
two dimensional solutions (roll patterns), only. We show that the system can exhibit stationary, periodic,
and chaotic regimes depending on the control parameters. The paper is organized as follows: In Section
2, the basic nonlinear hydrodynamic equations for viscoelastic magnetic fluid convection are presented. In
Section 3 for two dimensional roll patterns a truncated Galerkin expansion is used to derive a set of coupled
nonlinear ordinary differential equations. In Section 4 numerical simulations are performed and the results
are explained. Finally, a summary is given in Section 5. Some preliminary results have been presented before
at the Nordic Rheology Conference [51].

2. Basic Equations

We consider an (infinite) horizontal layer of thickness d of an incompressible magnetic fluid with a viscoelastic
carrier liquid in a vertical gravitational field g. We choose the z-axis such that g = −gẑ and the layer
boundaries are at z = 0 and z = d. A static temperature difference across the layer is imposed, T (z = d) =
T0 − βd and T (z = 0) = T0 with T0 the ambient temperature without any heating or cooling. We will only
consider the case of heating from below, β > 0. An external magnetic field H0 is assumed along the vertical
direction. The actual magnetic field in the layer, H, would be homogeneous, if the magnetic fluid were
absent. The magnetic fluid properties are modeled as those of electrically nonconducting superparamagnets.
Within the Boussinesq approximation, the balance equations are

∇ · v = 0, (1)

ρ0dtv = −∇peff −∇ · σ + ρg + M ·∇H, (2)
cv,H
T0

dtT + χTH0 · dtH = κ∇2T, (3)

where dtf = ∂tf+v ·∇f is the material derivative, v the velocity field, peff the effective pressure, ρ the mass
density (and ρ0 its equilibrium value), M the magnetization field, cv,H the specific heat capacity at constant
volume and magnetic field, χT the pyromagnetic coefficient, κ the thermal diffusivity, and χH describing
the magnetic field dependence of the susceptibility.
Within the Boussinesq approximation, density modulations, δρ = ρ − ρ0 are zero, except when calculating
the buoyancy force, where a linear equation of state is used

δρ = ρ0 (−αT δT + αHH0 · δH) (4)

that describes thermal (αT ) and magnetic (αH) expansion.
In addition, for the magnetic field H and the magnetic induction B, static Maxwell equations are imposed

∇×H = 0, (5)

∇ ·B = 0. (6)

with B = H + M. For the magnetic field a scalar magnetic potential H = −∇φ is used. Modulations of the
magnetization field are described by the equation of state

δM = χ0 δH + H0(χT δT + χHH0 · δH) (7)

reflecting the fact that the magnetic susceptibility is a function of temperature and field [52].
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2.1. PLB Viscoelastic Model

In a Newtonian incompressible fluid, the dissipative part of the stress tensor is related to the strain rate
tensor via the Newton law, σ = −2νD, where D is the symmetric part of the velocity field gradient and ν
is the kinematic viscosity.

For non-Newtonian fluids, an additional dynamic variable, the nonlinear Eulerian strain tensor Uij , is
introduced in the PLB model. It satisfies a nonlinear relaxation equation [48]

dtUij −Dij + Uki∇jvk + Ukj∇ivk = − 1

τ1
Uij −

1

τ2
UikUjk (8)

with {τ1, τ2} the linear and nonlinear relaxation constants. If these relaxation times diverge, elasticity is
permanent, suitable to describe solid matter, while for vanishing relaxation times (and elastic moduli) the
behavior of simple fluids is obtained.

Thermodynamics then requires the stress tensor in Eq.(2) to contain elastic as well as viscous (plastic)
parts and is written up to quadratic nonlinearities as

σij = −K1Uij +K2UikUjk − 2ν1Dij − ν2(UikDjk + UjkDik) (9)

where {K1,K2, ν1, ν2} are the linear and nonlinear elastic and viscous constants, respectively. This descrip-
tion can be generalized to even more complex fluids and soft matter systems in a controlled way, since the
connection of the dynamic equation for the strain tensor with possible additional degrees of freedom follows
standard thermodynamic and hydrodynamic procedures, while the heuristic generalization of the constitu-
tive equation reaches its limits, rapidly. Furthermore, realistic boundary conditions are straightforward for
the strain field, but not at all, if the stress is used as variable.

2.2. Boundary conditions and the perturbation of the conduction state

Given the applied temperature gradient, assuming zero velocity and rigid interfaces, using the standard
continuity conditions of the Maxwell equations, i.e., n× (Hin −Hex) = 0 and n · (Bin −Bex) = 0, where n
is the unit normal vector of the boundaries, the pure heat conductive, quiescent state is given by

vcon = 0, (10)

U con = 0, (11)

Tcon(z) = T0 − βz, (12)

Hcon(z) = H0(1 + λβz), (13)

where λ = χT /(1 + χ) with χ = χ0 + χHH
2
0 .

The next step is to derive the equations for the perturbation from this heat conducting state and to
investigate their stability. To do so in dimensionless form we introduce the characteristic scales, d for length,
d2/κ for time, κ/d for velocity, βd for temperature, βd2χT /(1 + χH) for the magnetic scalar potential
and ν1κ/d

2 for the pressure and the stress tensor. After some algebra, the dimensionless equations for the
perturbations of the dimensionless velocity (v), temperature θ, and magnetic potential φ, can be written as

∇ · v = 0 (14)

P−1dtv = −∇peff −∇ · σ +RaΣ(θ, φ) (15)

dt(θ −M4∂zφ) = (1−M4)vz +∇2θ (16)

(∂zz +M3[∂xx + ∂yy])φ− ∂zθ = 0 (17)

∇2φext = 0 (18)

with the abbreviation Σ ≡M1θ∇(∂zφ) + ẑ([1 +M1]θ − [M1 −M5]∂zφ). The perturbation equation for Uij
reads

dtUij −Dij + Uki∇jvk + Ukj∇ivk = − 1

Γ1
Uij −

1

Γ2
UikUjk. (19)
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with Γn = κτn/d
2 for n ∈ {1, 2}. This implies for the stress tensor

σij = −E1Uij + E2UikUjk − 2Dij − Z(UikDjk + UjkDik) (20)

with En = Knd
2/ν1κ and Z = ν2/ν1. The Newtonian part σij ∼ −2Dij comes without a phenomenological

parameter within this normalization.
Equations (14)-(20), contain the standard dimensionless numbers of magnetic thermal convection,

the Rayleigh number, Ra = αT gβd
4/κν1 (buoyancy effect), the Prandtl number, P = ν1/κ, M1 =

βχ2
TH

2
0/(ρ0gαT (1+χ)) (Kelvin force relative to buoyancy force), M3 = (1+χ0)/(1+χ) ≈ 1− (χHH

2
0 )/(1+

χ0), (nonlinear behavior of the magnetization) and two further magnetic numbers, M4 = χ2
TH

2
0T0/cH(1+χ)

and M5 = αHχTH
2
0/(αT (1 + χ)), which are not related to viscoelastic effects and are commonly neglected

due to their smallness [15, 16]. The viscoelastic numbers are the relaxation times Γ1,2, the elastic moduli
E1,2, and the viscosity ratio Z, which are all positive.

The external driving in Ra ∼ β and M1 ∼ H2
0 can be varied by several orders of magnitude, while M3

is typically only slightly larger than 1, & 1 and only a weak function of the external magnetic field. For
P we generally use P = 10, suitable for water-based ferrofluids, but in Sec. 4.6 we discuss in some detail
the changes one gets for higher values up to P ≈ 100. The relaxation times can be varied in viscoelastic
ferrofluids quite a bit by either adding a small amount of polymers or applying a magnetic field that leads
to chaining. Values up to Γ1 ∼ 1 seem to be possible, but we show in Sec. 4.6 that the chaotic behavior is
almost independent as long as Γ is between 10−6 and 1.

On the linear level (Γ2 = E2 = Z = 0) it is easy to recover the standard (linear) Oldroyd model

(1 + Γ∂t)σij = (1 + Λ∂t)Dij (21)

with the Deborah number, Γ = λ1κ/d
2, where λ1 is the stress relaxation time, and the retardation number,

Λ = λ2/λ1, the ratio between the strain rate relaxation time, λ2, and λ1. Both descriptions are equivalent
with Γ = Γ1 and Λ = (1 + E1Γ1)−1, revealing however that Λ is restricted by 0 < Λ < 1. The kinematic
viscosity ν1, used to scale the time in the viscoelastic description, is related to the asymptotic viscosity ν∞
(used in the Oldroyd case) by ν∞ = ν1/Λ.

Figure 1: (Color Online) The stream function amplitude in the stationary regime for three different values of r. The continuous,
dashed, and dot-dashed curves are for r = (0.5, 1.5, 2.5), respectively. The left frame shows the time dependence at M1 = 10
and M3 = 1.1. In the right frame the saturation value X1,sat = X1(τ → ∞)| is plotted as a function of M1 for three different
values of M3 at r = 2.5. The dashed, dot-dashed, and continuous curves are for M3 = (0.5, 1.0, 3.5), respectively. The fixed
parameters are k = π/

√
2, P = 10, E1 = 10, E2 = 1.5, Z = 0.5, Γ1 = 0.1 and Γ2 = 0.1.

3. Two dimensional system

In this section we study the system of equations using a truncated Galerkin method for a spatially two
dimensional case. It is divided into two parts, the first subsection illustrates the full equations, and in the
second one the specific Galerkin approximation is exposed.
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Figure 2: The bifurcation diagram based on the maxima of the stream function amplitude (left frame) and the appropriate
largest Lyapunov exponent (right frame) as a function of the reduced Rayleigh number r. The fixed parameters are k = π/

√
2,

P = 10, M1 = 10, M3 = 1.1, E1 = 10, E2 = 1.5, Z = 0.5, Γ1 = 0.1 and Γ2 = 0.1.
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Figure 3: Amplitudes in a chaotic regime at r = 13. At the left the time dependence of X1 is shown and at the right the
corresponding normalized Fourier power spectrum is plotted. The fixed parameters are as in Fig. 2.

3.1. Two dimensional equations

For the sake of simplicity, the analysis is limited to two-dimensional flows, v = {−∂zψ, 0, ∂xψ} introducing
the stream function ψ. In particular, we assume periodicity with wave number k in the lateral direction, x,
describing 2-dimensional convection rolls parallel to the y-axis. By the definition and symmetry of Uij , we
only have three components in the 2-dimensional case. Finally, the set of equation reduces to

P−1dt∇2
+ψ = Ra([1+M1]∂xθ−M1∂xzφ)+RaM1([∂xθ][∂zzφ]− [∂zθ][∂xzφ])−∂xz(σzz−σxx)−∇2

− σxz (22)

dtθ = ∂xψ +∇2
+θ (23)

(∂zz +M3∂xx)φ = ∂zθ (24)

dtUxx = −∂xzψ − 2Uxz∂xxψ + 2Uxx∂xzψ −
1

Γ1
Uxx −

1

Γ2
(U2

xx + U2
xz) (25)
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dtUxz =
1

2
∇2
−ψ + Uxx∂zzψ − Uzz∂xxψ −

1

Γ1
Uxz −

1

Γ2
Uxz(Uxx + Uzz) (26)

dtUzz = ∂xzψ − 2Uzz∂xzψ + 2Uxz∂zzψ −
1

Γ1
Uzz −

1

Γ2
(U2

zz + U2
xz) (27)

where dtF = ∂tF + (∂xψ)(∂zF ) − (∂zψ)(∂xF ) and ∇2
± = ∂xx ± ∂zz. The stress tensor components in term

of the strain tensor components are

σxx = −E1Uxx + E2(U2
xx + U2

xz) + 2∂xzψ − Z
(
Uxz∇2

− ψ − 2Uxx∂xzψ
)

(28)

σxz = −E1Uxz + E2Uxz(Uxx + Uzz)− ∂xxψ + ∂zzψ −
1

2
Z(Uxx + Uzz)∇2

− ψ (29)

σzz = −E1Uzz + E2(U2
xz + U2

zz)− 2∂xzψ − Z
(
Uxz∇2

− ψ + 2Uzz∂xzψ
)

(30)
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Figure 4: 3D phase portrait of {X1, X3, X4} in the chaotic regime of Fig. 3.

We impose idealized thermal and magnetic boundary conditions [12], assume free boundary conditions
for the stream function, and vanishing strain tensor components at z = {0, 1}

θ = ψ = ∂2zψ = ∂zφ = Uxx = Uzx = Uzz = 0. (31)

Apart from the two dimensional roll pattern considered here, the system could exhibit three dimensional
patterns like square or hexagonal ones. To compare their stability range with the roll patterns requires a
complete three dimensional analysis, which is well beyond the scope of the present work.

To study this set of equations we perform a Galerkin expansion. For the numerical simulations in the
lateral direction we will restrict ourselves to the fundamental mode, neglecting higher harmonics in the
x-direction. This assumption can be made since we consider a large container. In the z-direction across the
layer a multimode description will be used where necessary. Higher harmonics describe deviations of the
variables from the linear regime.
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Figure 5: Amplitudes in a periodic regime at r = 95. At the left the time dependence of X1 is shown and at the right the
corresponding normalized Fourier power spectrum is plotted. The fixed parameter are as in Fig. 2.

Figure 6: 3D phase portrait of {X1, X3, X4} in the periodic state of Fig. 5.

3.2. Galerkin expansion

According to the boundary conditions we can expand the variables as functions of (x, z, t) in the following
way [53]

ψ = −1

k
a1(t) sin(πz) sin(kx) + a2(t) sin(3πz) (32)

θ = a3(t) sin(πz) cos(kx) + a4(t) sin(2πz) (33)

φ = b3(t) sin(πz) cos(kx) + b4(t) sin(2πz) (34)

Uxx = a5(t) sin(πz) sin(kx) + a6(t) sin(3πz) (35)

Uxz = a7(t) sin(πz) sin(kx) + a8(t) sin(3πz) (36)

Uzz = a9(t) sin(πz) sin(kx) + a10(t) sin(3πz) (37)
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that fulfills the boundary conditions, automatically. Similar to the Lorenz model, we consider the effect of
second harmonics only in the temperature (and consequently in the scalar magnetic potential), with third
harmonics in all other variables. The second harmonics of the strain tensor components can be neglected,
since they do not modify the dynamics. Indeed, if the third harmonics are absent, the resulting equations
are linear and the viscoelastic part decoupled from the rest. Keeping the third harmonics is different from
the originally Lorenz model [53] and allows to describe the nonlinear viscoelastic effects.
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Figure 7: Amplitudes in a periodic regime at r = 13 and higher elastic moduli E1 = 500, E2 = 100, and higher nonlinear
viscosity Z = 3. All other fixed parameters are as in Fig. 2. At the left the time dependence of X1 is shown and at the right
the corresponding Fourier power spectrum is plotted.

Figure 8: 3D phase portrait of {X1, X3, X4} in the periodic regime of Fig. 7.

Substituting the trial functions, Eqs. (32)−(37), into (23)−(27), multiplying these equations by
the orthogonal eigenfunctions corresponding to Eqs. (32)−(37), and integrating over a convection cell,∫ π/k
−π/k

∫ 1

0
dx dz, yields a set of ten ordinary differential equations for the time evolution of the amplitudes,
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which can written in a vectorial form

Ẋ = F (X,P) (38)

where a dot over a function denotes the scaled time derivative, Π̇ = dΠ/dτ , where τ = q2t with q2 = k2 +π2.
The explicit form of Eq. (38) is given in the Appendix. These equations are also functions of the parameters
P = {r,M1,M2, P, E1, E2,Γ1,Γ2, Z}, where we have introduced the reduced Rayleigh number r = Ra/Ras
with Ras is the stationary Rayleigh number obtained from linear stability analysis [52]

Ras =
q6(k2M3 + π2)

k2 (k2[1 +M1]M3 + π2)
(39)

We remark that the equation for the scalar magnetic potential is independent of time and the magnetic
amplitudes are slaved and determined by b2(t) = −πa2(t)/(k2M3 + π2) and b3(t) = −a3(t)/(2π).

Figure 9: Amplitudes in a periodic regime at the same r = 13, but even higher E1 = 800 and Γ2 = 10 compared to Figs. 7 and
8. At the left the time dependence of X1 is shown and at the right the corresponding Fourier power spectrum is plotted. All
other fixed parameters are as in Fig 7.

Figure 10: 3D phase portrait of {X1, X3, X4} in the periodic regime of Fig. 9.
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We mention that Eqs. (38) correctly contain the limits of ferrofluid convection (no viscoelastic effects) [54]
as well as the (linear) Oldroyd fluid convection (no magnetic effects, linearized viscoelastic model) [55–58].
In the next section we analyze numerically model (38) in different dynamical regimes.

4. Numerical Results

This section is essentially divided into two parts. In the first subsection we briefly discuss those quantities
that are used to characterize spatio-temporal regimes and in the other subsections we present the results of
the numerical simulations varying different material parameters.

4.1. Numerical Methods

In order to study numerically the dynamical behavior of our system we have integrated Eqs. (A.1) -
(A.10) via a classical explicit fourth order Runge-Kutta integration scheme with a fixed time step 4t = 0.01
guaranteeing a precision of 10−8 for the amplitudes. For each set of parameters we let the numerical solution
evolve for at least 106 time steps in order to exclude transient phenomena. In the plots, where the time
dependence of a quantity is shown, we shift the time window to catch the relevant dynamical properties
under consideration. This system is a generalization of the Lorenz system, hence we expect that the system
can exhibit complex behavior.

In order to investigate how the system changes its dynamical behavior as a function of the parameters
involved, we determine bifurcation diagrams. These diagrams are obtained by taking repeatedly the maxi-
mum value of the stream function amplitude X1,max in a given time interval for a large range of different
values of the parameters. If there is always the same X1,max, then the system is constant or periodic, while
for a finite continuous distribution of X1,max values, the behavior is either quasi-periodic or chaotic.

In addition, in order to examine in more detail the chaotic regimes as a function of the parameters
involved and as a complement to the information from the bifurcation diagrams, we calculate the Lyapunov
exponents (LEs), λi defined by [59]

λi = lim
τ→∞

1

τ
ln
(‖δYi(τ)‖
‖δYi(0)‖

)
,

The LEs are numbers that quantify the distance between two initially close trajectories δYi of a vector field
Y, subject to an evolution equation dYi/dτ = F i(Y, τ). For a negative LE this distance vanishes, while
for a positive LE it diverges exponentially. The latter is the hallmark of a chaotic behavior [54, 59–64].
Our 10-dimensional phase space carries 10 LEs, which can be ordered in descending form, with the largest
Lyapunov exponent denoted by λmax. The error Err in the evaluation of the LEs has been checked by using
Err = σ (λM ) /max (λM ), where σ(λM ) is the standard deviation of λmax. In all cases studied here Err is
of the order of 1%, which is sufficiently small for the purpose of the present analysis.

4.2. Stationary States

The left frame of Fig. 1 shows the normalized stream function amplitude, X1, as a function of time τ
for three different values of the reduced Rayleigh number r. After a transient, X1 tends to a stationary
value, which is zero for r < 1 (conduction state) and finite for r > 1 (stationary roll state). The saturation
amplitude, i.e. X1,sat = X1(t→∞) increases with increasing r and the transient oscillations become longer
and more pronounced. The right frame shows the saturation amplitude as a function of the magnetic field,
M1 ∼ H2

0 , in the stationary roll regime, for three different values of M3. The saturation amplitude increases

with a power law X1,sat ∼Mξ
1 such that ξ depends on r and the rest of the material parameters. While the

magnetic field has a destabilizing effect through M1 increasing the amplitude, the magnetic nonlinearity M3

reduces the amplitude, albeit the increase of M3 is due to an increasing magnetic field. However, the effect
of M1 is dominant.

176



Figure 11: The bifurcation diagrams of X1 as a function of E1 at r = 8; all other fixed parameters are as in Fig. 2.

Figure 12: The bifurcation diagram of X1 as a function of Z at E1 = 100. The other fixed parameters are as in Fig. 11.

4.3. Dependence on Rayleigh number

Fig. 2 shows in the left frame the bifurcation of X1,max as a function of the reduced Rayleigh number r.
Stationary states exist, with increasing amplitudes (left left inset), between r = 1 and r ≈ 9 for the chosen
viscoelastic parameters. Above that, the system becomes non-regular, and as the Lyapunov exponents in
the right frame show, also chaotic. There is a window of regular states around between r ≈ 87.5 and r ≈ 99,
where the chaotic regime is interrupted by a regular, periodic one (right right inset). A second regular regime
is found beyond r ≈ 138. It is expected that this interplay of regular and non-regular regimes continues when
further increasing r.

Figures 3 and 4 show the system at r = 13, which is in the chaotic regime, cf. Fig. 2. The time development
of the stream function amplitude is chaotic and, as a consequence, its corresponding Fourier power spectrum
is a continuum. Figure 4 shows the appropriate 3D phase portrait in the form of a strange attractor rather
similar to the Lorenz attractor.

Figures 5 and 6 show the system at r = 95 in the first periodic window of the bifurcation diagram
Fig. 2. The time dependence of the normalized stream function, X1 (Fig.5 left frame) is periodic and the
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corresponding normalized Fourier power spectrum is discrete. There are multiple peaks in the spectrum,
such that the first higher harmonic is the largest peak. Fig. 6 shows a 3D phase portrait of {X1, X3, X4} for
this state. It can be shown that the shape of this phase portrait is a stable non-symmetric X2

1X
2
3 orbit in

the Sparrow notation [65].

Figure 13: (Color online) Phase diagram displaying the largest Lyapunov exponent λmax color coded as a function of both
magnetic numbers M1 and M3 at r = 10 and intermediate viscoelastic parameters E1 = 100, E2 = 10, and Z = 3; all other
fixed parameters are as in Fig. 2.

4.4. Dependence on Viscoelastic Parameters

In order to explore the influence of the viscoelastic parameters, in particular, of the linear (E1) and
nonlinear (E2) elastic moduli and the nonlinear viscosity (Z) we first considered the state at r = 13 that is
chaotic for rather small viscoelastic parameters E1 = 10, E2 = 1.5, and Z = 0.5. Increasing those numbers
to E1 = 500, E2 = 100, and Z = 3 a periodic state is found as shown in Figs. 7 and 8. This is a rather
simple state as can be seen (Fig. 7) from the time development of the amplitude as well as from the discrete
amplitudes in the corresponding Fourier spectrum, where the higher harmonics are less important than first
frequency. Apparently, higher elastic moduli tend to suppress chaos. This is even more pronounced in Figs. 9
and 10, where E1 has been further increased to E1 = 800, and Γ2 has been also increased to Γ2 = 10. Again,
a periodic state is found, whose time dependence and Fourier spectrum do not look basically different from
those of Fig. 7, but the phase portrait (Fig. 10) reveals a rather different type of periodic state, in the form
of a non-symmetric closed orbit.

In order to be more systematic, we have calculated first the bifurcation diagram as a function of E1 in
Fig. 11 at a low reduced Rayleigh number r = 8 (with the same fixed parameters as in Fig. 2). For low
E1 the system is in the stationary state according to Fig. 2, but beyond a threshold at E1 ≈ 50 chaos sets
in. Only at much higher values E1 & 160 chaos disappears again and periodic states occur, a few examples
of which we have discussed above. It is rather remarkable that increasing the (linear) elastic modulus can
trigger chaos in this system, while the suppression of chaos at even higher E1 (higher internal stiffness) is
more intuitive, since obviously, solids cannot show chaotic flow behavior.
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Within the range of relaxation times considered here, there is almost no influence on the chaotic behavior.
This is demonstrated in Sec. 4.6 in conjunction with the Prandtl number dependence.

The influence of the nonlinear viscosity Z is shown in another bifurcation diagram in Fig. 12. For
intermediate values of E1 = 100 at a small r = 8 the system shows chaotic states for low Z values, in
accordance with the previous E1 bifurcation diagram. However, above a sharp transition at Z ≈ 0.7 the
states finally become periodic. This suppression of chaos by a high nonlinear viscosity cannot easily be
understood, intuitively.

4.5. Dependence on Magnetic Parameters

We discuss the largest Lyapunov exponent as a function of both, M1 and M3 in Fig. 13. At intermediate
elasticity and viscosity parameters, E1 = 100, E2 = 10 and Z = 3, and a low r = 10 the LEs increase
when M1 or M3, or both, are increased. For very low values of the magnetic numbers the system is in the
stationary regime. However, in contrast to the stationary state, in which M3 has a stabilizing effect (Fig. 1),
chaos is promoted and corroborated by both, M1 and M3. The critical value for M1, where chaos sets in,
decreases with increasing M3, and vice versa.
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Figure 14: Largest Lyapunov exponent λmax as a function of Prandtl number, P , for different values of r at Γ1 = Γ2 = 10−4

(left) and Γ1 = Γ2 = 10−6 (right). The dotted, dot-dashed and dashed curves are for r = (5, 10, 15), respectively. The fixed
parameters are: k = π/

√
2, M1 = 10, M3 = 1.1, E1 = 10, E2 = 1.5 and Z = 0.5.

4.6. Dependence on Prandtl number

Figure 14 shows the largest Lyapunov exponent λmax as a function P for different values of r. In the
left frame we fix the relaxation times to Γ = 10−4 and in the right frame to Γ = 10−6. Obviously, the onset
of chaos is shifted to higher values of the Rayleigh number r, if the Prandtl number is increased. This is
independent of the relaxation times, only the numerical noise is stronger for the right Γ value. In Fig. 15
we analyze the case of a high Prandtl number (P = 100) in more detail. One can observe that not only
is the onset to chaos shifted to a rather high value of r, also the route to chaos is different than for low
Prandtl numbers: There is now a large periodic state (about 40 < r < 100) between the stationary state
and the chaotic one. These findings are corroborated from a different point of view in Fig. 16, where for an
intermediate value of r = 15 there is no chaos for P = 100 and 50, in contrast to the case of low Prandtl
number P = 10. For this parameter set it is also obvious that the relaxation times Γ do not play a role
within the considered range.

Finally, we remark that for the very small values of Γ considered here, we have used a smaller time step
(dt = 10−7) in the simulations than before, in order to obtain the same error in the Lyapunov exponent as
in the previous simulations.
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Figure 15: Largest Lyapunov exponent λmax as a function of r at P = 100. The other fixed parameters are the same of Fig. 2.
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Figure 16: Largest Lyapunov exponent λmax as a function of Γ = Γ1 = Γ2 for different values of P at r = 15. The dotted,
dot-dashed and dashed curves are for P = (100, 50, 10), respectively. The other fixed parameters are the same of Fig. 14.

5. Final Remarks

In the present work, Rayleigh-Benard convection in a magnetic viscoelastic liquid is studied. For the
viscoelastic properties the PLB model [48] is used. Similar to the Lorenz approach [53], a set of ten coupled
non-linear ordinary differential equations is obtained that contains two magnetic and five viscoelastic num-
bers. The rather large number of relevant dynamic equations is a consequence of the nonlinear viscoelastic
description that requires to go beyond the harmonic approximation in the mode analysis. The sequence of
different states is obtained by calculating bifurcation diagrams and the largest Lyapunov exponents. Some
exemplified states are characterized by the time development of the stream function amplitude and its Fourier
spectrum, as well as by phase portraits in a reduced phase space (Lorenz-type attractors, homoclinic orbits
etc.).

The stationary bifurcation at low Rayleigh numbers is slightly influenced by the magnetic properties
of the fluid, but not at all by the viscoelastic ones. Increasing the Rayleigh number (at rather moderate

180



magnetic and viscoelastic numbers) the system becomes chaotic. The large chaotic regime is interrupted
by a window of regular periodic states, before chaos recurs at even higher Rayleigh numbers. Fixing the
Rayleigh number at a low value, where a Newtonian fluid is in the stationary regime, chaos is triggered by
increasing the elastic number. However, at very large elastic numbers chaos is suppressed and gives rise to
regular periodic states. These periodic states are rather different from those at high Rayleigh numbers. It is
also shown that high nonlinear viscosity numbers suppress chaos. At intermediate viscoelastic parameters,
both magnetic numbers support and increase chaos.

For higher Prandtl numbers chaos is suppressed and requires higher Rayleigh numbers. In addition, there
is a periodic state in between the stationary and the chaotic one, and this picture is not changed within a
wide range of relaxation times.
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A. Generalized Lorenz Equations

In this appendix we list the generalized Lorenz equations (38) in detailed form

Ẋ1 = P (X3 −X1)− 4
√

2E2kPΣ

15q6
(X5X8 +X6X7)− 4

√
2E2kPΣ

15q6
(X8X9 +X10X7) (A.1)

+
M13P

πr
X3X4 +

6
√

2π2kPΣZ

5q6
(X2X5 +X2X9) +

4K4PZ

15πq4
(X1X10 +X1X6)− πE1kPΣ√

2q6
X7

Ẋ2 = −9π2P

q2
X2 −

E1P

q2
X8 +

8E2P

9πq2
(X8X10 +X8X6)− 4E2P

15πq2
(X7X5 +X7X9)

+
2
√

2PΣZ

15π2k
(X1X5 +X1X9)− 4πPZ

q2
(X2X6 +X2X10) (A.2)

Ẋ3 = −X3 + (r −X4)X1 (A.3)

Ẋ4 = −4π2

q2
X4 +X1X3 (A.4)

Ẋ5 = −X5

Γ1
+

16
√

2kq2

15π2
X1X8 +

16

15πΓ2
(X5X6 +X7X8) (A.5)

Ẋ6 = −X6

Γ1
+

8
√

2kq2

15π2
X1X7 +

4

15πΓ2

(
X2

5 −X2
7

)
− 8

9πΓ2

(
X2

6 −X2
8

)
(A.6)

Ẋ7 = −X7

Γ1
+

Σq2√
2πk

X1 +
8

15πΓ2
(X10X7 +X5X8) +

8

15πΓ2
(X6X7 +X8X9)

+
8
√

2q2

15

(
k

π2
X1X10 −

1

k
X1X6

)
+

24

5
πX2X5 (A.7)

Ẋ8 = −X8

Γ1
+

9

2
π2X2 −

8

9πΓ2
(X10X8 +X6X8) +

4

15πΓ2
(X5X7 +X7X9)

+
4
√

2q2

15

(
k

π2
X1X9 −

1

k
X1X5

)
− 8πX2X6 (A.8)

Ẋ9 = −X9

Γ1
− 16

√
2q2X1X8

15k
+

16

15πΓ2
(X5X6 +X7X8) +

48π

5
X2X7 (A.9)
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Ẋ10 = −X10

Γ1
− 8
√

2q2X1X7

15k
+

4

15πΓ2
(X2

5 +X2
7 )− 8

9πΓ2
(X2

6 +X2
8 )− 16πX2X8 (A.10)

The dot over a function denotes the time derivative, Π̇ = dΠ/dτ , with τ = q2t, with q2 = π2 + k2.
The new amplitudes, {Xj}, are related with the old amplitudes, {aj}, as follow: a1 = (q2

√
2/π)X1, a3 =

−(
√

2/(πr))X3, a4 = −X4/(πr), and aj = Xj in the other cases. Here M13 = πk2M1M3/(π
2+k2[1+M1]M3),

Σ = k2 − π2, K4 = k4 − 16π2k2 + π4 and r = Ra/Ras such that Ras given in Eq. (39).
Note that when the viscoelastic effects are neglected, E1 = E2 = Z = 0 and Γ1 = Γ2 → ∞, we recover

the generalized Lorenz model for ferrofluid [54]; which in the the nonmagnetic limit reproduces the Lorenz
equation [53]. The magnetic effects in Eq. (A.1) are introduced in the terms X3X4, the last one being a pure
magnetic contribution. Also, in Eq. (A.1) the term X7 is related to the linear elasticity, while the terms X5X8,
X6X7, X8X9 and X10X7 are related to the nonlinear elastic modulus, E2, and the terms X1X10, X1X6,
X5X2 and X9X2 are related to the nonlinear viscoelastic effect, Z. Eq. (A.2) contains pure higher harmonic
combinations, even the linear term since the first is a self-one,X2, and the second linear term proportional
to X8 is third harmonic of Uzx. Eqs. (A.3) and (A.4) are the equations for the temperature amplitudes and
they have the same form as in the Lorenz model [53]. The Eqs. (A.5) − (A.10) give amplitudes of the strain
tensor dynamics. In all these equations the first linear term is connected to the dimensionless relaxation
time Γ1.
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