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Abstract. We present the derivation of the macroscopic equations for systems with an axial dynamic preferred direc-
tion. In addition to the usual hydrodynamic variables we introduce the time derivative of the local preferred direction
as a new variable and discuss its macroscopic consequences including new cross coupling terms. Such an approach is
expected to be useful for a number of systems for which orientational degrees of freedom are important including, for
example, the formation of dynamic macroscopic patterns shown by certain bacteria such a Proteus mirabilis. We point
out similarities in symmetry between the additional macroscopic variable discussed here, and the magnetization density
in magnetic systems as well as the so-called l̂ vector in superfluid 3He-A. Furthermore we investigate the coupling to a
gel-like system for which one has the strain tensor and relative rotations between the new variable and the network as
additional macroscopic variables.

1 Introduction

In active media – as they are dominant in biological systems –
one finds, as a rule, dynamically a preferred direction, which
disappears when the external driving force, typically a chem-
ical reaction leading to concentration gradients, is vanishing.
In the field of pattern formation in such media typical exam-
ples include bacterial growth as it has been studied for a num-
ber of systems including the bacterium Proteus mirabilis [1,2].
Depending on the actual system under consideration these dy-
namic preferred directions can be polar or axial in nature. For
example, for the motion of motors along actin filaments one
can distinguish between head and tail thus giving rise to a po-
lar preferred direction dynamically [3, 4]. If one considers the
motion of flagella [5–9], which are accompanied by the rota-
tion of one or, more typically, bundles of flagella, one has an
axial dynamic preferred direction closely linked to a broken
orientational symmetry due to a chemical reaction driving this
rotation.

From a macroscopic point of view there are significant
differences between equilibrium systems with broken transla-
tional symmetries as they exist in all crystals and broken rota-
tional symmetries as they are the rule for all liquid crystalline
systems [10]. In the case of crystals one has the density of linear
momentum as the generator of the broken symmetries while for
broken rotational symmetries the angular momentum, an axial
vector, serves as the generator [11]. From systems close to local
thermodynamic equilibrium it is well known that the two types
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of hydrodynamic systems have qualitatively different behavior
with respect to their dynamic equations, their mode structure,
their nonlinear behavior and instabilities [10–13]. Equilibrium
systems with broken rotational symmetry can have a polar or
an axial preferred direction. The former include, for example,
ferroelectric and antiferroelectric crystals and liquid crystals,
while equilibrium preferred axial directions can be found in fer-
romagnetic systems. The nematic director n behaves in many
respects similar to an axial vector, although it is not a vector
due to the general n to −n invariance.

It therefore appears to be natural to investigate for active
(driven) systems the two analogous cases of axial and polar
preferred direction. In this paper it is our goal to investigate as
a first step the macroscopic behavior of a system which has an
axial preferred direction dynamically and thus is closely linked
to active systems showing rotational motions as an essential
ingredient of their dynamics.

It is important to emphasize that the work presented here is
rather different from the traditional work on liquid crystals, ne-
matics, cholesterics and smectics in the sense that the orienta-
tional preferred direction exists only dynamically, but vanishes
as soon as the thermodynamic driving force vanishes [12, 13].
Thus the systems we consider have no preferred direction in
equilibrium in contrast to all conventional liquid crystalline
phases. However, we will not describe the process of switch-
ing on or off the driving force, but will assume that the driving
force is always on, i.e. the system is in its active state showing
the preferred dynamic direction.

As it turns out fluid and gel-like active systems show in
their macroscopic behavior a number of similarities with other
complex fluids analyzed before. One example is superfluid
3He-A, which has an axial preferred direction in real space
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breaking time reversal symmetry - in addition to a preferred
direction in spin space [14, 15]. A second more recent exam-
ple are uniaxial magnetic gels [16, 17], which have in equilib-
rium a nonvanishing value of the magnetization density as a
macroscopic quantity that breaks time reversal invariance. In
addition, one can have in the latter system relative rotations be-
tween the two ‘subsystems’, the magnetic fluid component and
the gel network, as macroscopic variables [18].

A typical example relevant to the present paper are flag-
ella found in many biological systems, which are already com-
plex objects by themselves, but can nevertheless form bundles
which reveal strongly collective behavior. The latter property
shows that what is of interest here also forms a bridge between
mesoscopic and macroscopic behavior. We would like to stress,
however, that we will not address any issue at a microscopic
level and/or single molecule behaviour, but that the focus here
is completely on collective behaviour and sufficiently long time
scales and sufficiently large spatial scales.

We mention that there is also a body of literature using
modified nematodynamic equations to describe active systems
including nonpolar [19] as well as polar [20] aspects.

The present paper is organized as follows. In section II we
describe in detail the choice of the additional macroscopic vari-
ables and the underlying motivation. In section III we derive
the resulting macroscopic equations followed in section IV by
a discussion of the modifications resulting from the presence
of a gel. In section V we investigate some simple solutions of
the macroscopic equations presented and in section VI we ex-
amine the influence of a macroscopic collective handedness,
which is clearly of high interest for biological systems. Finally
we present in section VII a brief summary and conclusions.

2 Hydrodynamic and macroscopic variables

2.1 Hydrodynamic variables

As truly conserved hydrodynamic quantities we have in the
type of system we consider here the mass density, ρ, the en-
ergy density, ε, and the momentum density, g. Since most of
the systems of interest have several (say n) components, there
are n conserved densities as truly hydrodynamic quantities for
mixtures without chemical reactions. We will describe them in
the following by the total density ρ and n − 1 concentrations
φα. When chemical reactions are taken into account, the con-
centrations φα must be transferred from the list of truly hydro-
dynamic variables to the class of macroscopic variables, which
relax on a sufficiently long, but finite time scale. In section
IV we will also consider the coupling terms arising for net-
works or gels. In this case we also keep the strain field, εij , in
our list of hydrodynamic (chemically permanently cross-linked
network) and/or macroscopic (when we make allowance for the
existence of a transient network) variables.

2.2 A new macroscopic variable

In this paper we are interested in a type of behavior not con-
sidered before in macroscopic descriptions, namely in systems
which have an axial preferred direction only dynamically. That

is we consider systems in nonequilibrium situations for which
there is no preferred direction in true equilibrium.

A typical example that comes to mind are the patterns
formed in bacterial growth, for example for the bacterium Pro-
teus mirabilis [2]. As an initial condition the gel is prepared
in a Petri dish containing a certain food concentration homo-
geneously across the whole experimental cell. Then the gel at
the center of the Petri dish is inoculated with the bacterial sus-
pension. As long as there is food and the other experimental
conditions - such as the stiffness of the agar in the Petri dish
- are favorable, the bacteria elongate, start to move and form
macroscopic patterns over extended periods of time of the or-
der of one day. Once the food has disappeared, the elongated
bacteria return to their original shape and random orientations
and the macroscopic patterns disappear as well. Both, the onset
of pattern formation in this system as well as the disappearance
of the patterns has been modeled recently [21].

In many biological systems one detects preferred directions
only dynamically on many length and time scales, while there
is no static preferred direction. On large length scales one ob-
serves, for example, bird flocks and fish swarms [22–25]. There
is one straightforward, but important feature: before the birds
start their flight, that is as long as they are on the ground, there
is typically no preferred direction at all. Only after they start
to fly and form a flock there is a dynamic preferred direction.
After the birds land and disperse on the ground, there is again
no preferred direction.

The same applies to the patterns formed by the bacterium
Proteus mirabilis discussed above: they form target waves and
spiral patterns only as long transients on intermediate length
(∼ cm) and time (∼ hours) scales.

Going to smaller spatial scales, the beating of cilia and flag-
ella is observed in many systems dynamically on a length scale
of micro meters (µm) [26–28]. For the latter class of systems
one has on average an angular velocity from the dynamics of
the cilia and flagella, while for the other systems mentioned
above a mean velocity (the case of bird flocks and fish swarms)
or a velocity difference with respect to the background (the case
of pattern formation in Proteus mirabilis) results.

Here we focus on the description of systems, which are
characterized by a mean angular velocity including the angu-
lar motion of cilia and flagella. This quantity, which we will
call W in the following, transforms like an axial vector. It is
even under parity, odd under time reversal and invariant un-
der Galilei transformations. For the case of a mean velocity,
as it applies in the other systems sketched out above, on the
contrary, the state variable transforms like a velocity. It is a
polar vector, which is odd under parity and time reversal and
transforms like a velocity under Galilei transformations. The
macroscopic behavior of such a system will be investigated in
a separate paper [29].

The vector W has in general three independent compo-
nents in three dimensions (3 D). Drawing on our experience
with superfluid 3He-A [14, 15] we can anticipate immediately
that the behavior under parity and Galilei transformations will
lead to important consequences in the macroscopic dynamic
behavior: W behaves under parity, time reversal and Galilei
transformations like the l̂ vector of 3He - A, while an average
velocity has under these transformations the same behavior as,
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for example, the superfluid velocity, vs in 3He - A. We also
point out that under the transformations just discussed, W has
the same properties as the magnetization density, M, in a mag-
netic system, which is also an axial vector.

As for many other systems, including polar nematic liquid
crystals and magnetic systems, one can decompose W into a
magnitude, |W| ≡ W , and into its direction, wi = Wi/W .
The former can be interpreted as the degree of the dynamic
ordering. The direction wi, which exists only dynamically, will
be used throughout to construct property tensors reflecting the
locally uniaxial properties of our systems via the use ofwi itself
and the transverse Kronecker delta, δ⊥ij , with δ⊥ij = δij−wiwj ,
which projects onto the plane perpendicular to wi. We have
checked that such a description leads to the same results for
macroscopic dynamics as using W. Only when the vicinity of
defect cores is considered, the use of W is more advantageous
avoiding any singularities.

Thus in the fluid systems we consider we have W as an
additional macroscopic variable. Just as for magnetic systems
with the magnetization density, M, and for superfluid 3He - A
with l̂, there is no W to −W symmetry here.

We note that the approach presented here must be con-
trasted to the case of the macroscopic description of usual ne-
matic liquid crystals [12], where one has an equilibrium pre-
ferred direction, usually denoted as director, n0, and also to
that of polar nematics [30–32], where one has in equilibrium
a polar preferred direction, p0. In both cases, the macroscopic
variables are the deviations form the preferred equilibrium di-
rection, δn = n− n0 and δp = p− p0, respectively.

3 Derivation of macroscopic equations

3.1 Statics and thermodynamics

To get the static properties of the fluid systems under consid-
eration we use the local first law of thermodynamics relating
changes in the entropy density σ to changes in the hydrody-
namic variables and the new macroscopic variable, Wi, dis-
cussed above. We have for the Gibbs relation

dε = Tdσ+µdρ+µαdφα+vidgi+h
′W
i dWi+Φ

W
ij d(∇jWi)

(1)
where α counts the different concentrations running from 1 to
n − 1 and where summation over such Greek indices occur-
ring twice is always assumed. In addition, the Einstein summa-
tion convention for Cartesian components is always assumed.
In Eq.(1) the thermodynamic quantities, temperature T , chem-
ical potential µ, relative chemical potentials µα, velocity vi,
the molecular fields h

′W
i and ΦWij , are defined as partial deriva-

tives of the energy density with respect to the appropriate vari-
ables [13]. If we neglect surface effects and integrate Eq.(1) by
parts we can obtain an expression for the Gibbs relation that we
want to use throughout the rest of this paper

dε = Tdσ + µdρ+ µαdφα + vidgi + hWi dWi (2)

where the molecular field hWi is given by hWi = h
′W
i −∇jΦWij .

To determine the thermodynamic conjugate variables we
need an expression for the local energy density. This energy

density must be invariant under time reversal as well as under
parity and it must be invariant under rigid rotations, rigid trans-
lations and covariant under Galilei transformations. The ex-
pression for the energy density is assumed to be convex for sta-
bility reasons. Taking into account these symmetry arguments
we write down an expansion for the generalized energy den-
sity up to second order in the variables that describe deviations
from its local minimum and where we have also incorporated
some interesting cubic coupling terms

ε =
α

2
(Wi −W0wi)

2 +
1

2
Kijkl(∇iWj)(∇kWl)

+ σσijk(∇iWj)(∇kδσ) + σρijk(∇iWj)(∇kδρ)
+ σαijk(∇iWj)(∇kδφα)
+ cρρ(δρ)

2 + cσσ(δσ)
2 + cαβ(δφα)(δφβ)

+ cρα(δρ)(δφα) + cρσ(δρ)(δσ) + cσα(δσ)(δφα)

+
1

2ρ
gigi + cijkgi(∇jWk)

+ (aαδφα + aσδσ + aρδρ)(Wi −W0wi)
2 (3)

Apart from the energy density of a normal fluid binary mix-
ture, Eq.(4) contains the energy density of normal fluid mix-
tures with (n− 1) concentrations, φα for a n-component mix-
ture. There is a stiffness coefficient α for W and a Frank type
of gradient free energy for the rotations of W. The former de-
scribes the energetic penalty, when the degree of dynamic or-
dering is different from W0, the one induced by the driving
force that puts the system into its active state. We would like
to stress that because of the negative time reversal property of
Wi – a coupling between the curl of W and the momentum
density mediated by the tensor cijk can arise, which takes the
form cijk =

(
c||wiwl + c⊥δ

⊥
il

)
εljk. This kind of coupling is

very similar to one of the couplings appearing in superfluid
3He − A first introduced by R. Graham [14]. In this system
one defines an axial vector l parallel to the direction of the net
orbital momentum of the helium pairs. This vector does not
commute with the total angular momentum vector and there-
fore this variable breaks the continuous rotational symmetry
spontaneously similar to the variable Wi in our system. The
source free part of the momentum density of 3He − A is pro-
portional to the curl of this vector l while the proportionality is
given by ~

2m and a coupling tensor cij .
Since the system we discuss is uniaxial, all property tensors

will therefore take a uniaxial form.
The tensorKijkl describes contributions to the local energy

density due to spatial changes of the direction of the vector Wi

as well as of its magnitude. We get six independent constants
for this coupling

Kijkl =
1

2
K1

(
δ⊥ijδ

⊥
kl + δ⊥il δ

⊥
jk

)
+K2wpεpijwqεqkl

+K3wkwiδ
⊥
lj (4)

+K4wiwjwkwl +K5wjwlδ
⊥
ik

+
1

4
K6

(
wiwlδ

⊥
kj + wjwkδ

⊥
il + wiwjδ

⊥
kl + wkwlδ

⊥
ij

)
For the couplings between the gradients of the scalars ρ, ci

and σ and the gradients of the vector Wi, the tensors take the
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following form

σfijk = σf1wiwjwk + σf2wjδ
⊥
ik + σf3

(
wiδ
⊥
jk + wkδ

⊥
ij

)
(5)

where f can be either ρ, σ or α.
We now give the expressions for the conjugated variables

in terms of the hydrodynamic and macroscopic variables. They
are defined as partial derivatives with respect to the appropriate
variable, while all the other variables are kept constant, denoted
by dots at the brackets in the following. We obtain

vi =

(
∂ε

∂gi

)
...

=
1

ρ
gi + cijk∇jWk (6)

h
′W
i =

(
∂ε

∂Wi

)
...

= (α+ 2aαδφα + 2aσδσ + 2aρδρ)

×(Wi −W0wi) (7)

ΦWij =

(
∂ε

∂(∇jWi)

)
...

= Kijkl∇kWl + σρijk(∇kδρ) + σσijk(∇kδσ)
+ σαijk(∇kδφα) + cijkgk (8)

δT =

(
∂ε

∂δσ

)
...

= 2cσσδσ + cρσδρ+ cσαδφα

+ aσ(Wi −W0wi)
2 (9)

δµ =

(
∂ε

∂δρ

)
...

= 2cρρδρ+ cραδφα + cρσδσ

+ aρ(Wi −W0wi)
2 (10)

δµα =

(
∂ε

∂δci

)
...

= 2cαβδφβ + cαρδρ+ cασδσ

+ aα(Wi −W0wi)
2 (11)

We used integration by parts to obtain expression (2) for the
local energy density, where the new molecular field hWi was
given by hWi = h

′W
i −∇jΦWij . If we use Eqs. (7,8) we find

hWi = (α+ 2aαδφα + 2aσδσ + 2aρδρ) (Wi −W0wi)

−(∇jKijkl)(∇kWl)−Kijkl(∇j∇kWl)

−(∇jσρijk)(∇kδρ)− σ
ρ
ijk(∇j∇kδρ)

−(∇jσσijk)(∇kδσ)− σσijk(∇j∇kδσ)
−(∇jσαijk)(∇kδφα)− σαijk(∇j∇kδφα)
−(∇jcijk)gk − cijk(∇jgk) (12)

3.2 Dynamic equations

To determine the dynamics of the variables we take into ac-
count that the first class of our set of variables contains con-
served quantities that obey a local conservation law while the
dynamics of the variable Wi can be described by a simple bal-
ance equation where the counter term to the temporal change of

the quantity is called a quasicurrent [13]. As a set of dynamical
equations we get

∂tρ+∇igi = 0 (13)

∂tσ +∇i(σvi) +∇ijσi =
R

T
(14)

ρ∂tφα + ρvi∇iφα +∇ijαi = 0 (15)

∂tgi +∇j
(
vjgi + δijp+ σthij + σij

)
= 0 (16)

∂tWi + vj∇jWi +
1

2
(W × [∇× v])i +Xi = 0 (17)

where we introduced

σthij = +
1

2
(Ψjkεki + Ψikεkj) (18)

In Eq.(18) we implemented the requirement that the energy
density should be invariant under rigid rotations [13].

The pressure p in Eq.(16) is given by ∂E/∂V and reads for
our system

p = −ε+ µρ+ Tσ + v · g (19)

In the equation for the entropy density (14) we introduced
R, the dissipation function which represents the entropy pro-
duction of the system. Due to the second law of thermodynam-
ics R must satisfy R ≥ 0. For reversible processes this dissipa-
tion function is equal to zero while for irreversible processes it
must be positive. In the following we will split the currents and
quasicurrents into reversible parts (denoted with a superscript
R) and irreversible parts (superscript D).

3.3 Reversible dynamics

If we again make use of the symmetry arguments mentioned
above and use Onsager’s relations we obtain the following ex-
pressions for the reversible currents up to linear order in the
thermodynamic forces

gi = ρvi − ρcijk∇jWk (20)

jσRi = −κRij∇jT −DαTR
ij ∇jµα (21)

jαRi = −DαβR
ij ∇jµβ −DαTR

ij ∇jT (22)

σRij = −cRJijkhWk − νRijklAkl (23)

XR
i = bRijh

W
j − cRJjkiAjk (24)

The additional term in the momentum density already ap-
peared in superfluid 3He − A and we will discuss one of the
consequences of this coupling later. The material tensors in
Eqs. (21) and (22) all have to be odd under time reversal, be-
cause the currents have to be odd under time reversal. They are
of the form

Fij = Fεijkwk (25)

where F is either κR, DαTR, or DαβR. The antisymmetric
form Fij = −Fji guarantees a vanishing entropy production
required for reversible currents, if in addition DαβR = DβαR
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is assumed. Furthermore we find for the coupling terms in the
stress tensor

cRJijk = cRJ1

(
wiδ
⊥
jk + wjδ

⊥
ik

)
+cRJ2 wkδ

⊥
ij + cRJ3 wiwjwk (26)

νRijkl = νR1
(
εikpδ

⊥
jl + εjlpδ

⊥
ik + εilpδ

⊥
jk + εjkpδ

⊥
il

)
wp

+νR2 (εikpwjwl + εjlpwiwk

+εilpwjwk + εjkpwiwl)wp (27)

We are now left with the tensor coupling the molecular field
hWi to the quasicurrent for Wi, which takes the form

bRij = bRεijkwk (28)

As a consequence of the existence of a dynamical preferred
direction, there is a contribution in the reversible stress tensor,
Eq.(23),

σRij = αW0(c
RJ
2 δ⊥ij + cRJ3 wiwj) (29)

that resembles the active term in the nematodynamic descrip-
tion of active systems [19].

3.4 Irreversible dynamics and entropy production

We can use the dissipation function R to derive the irreversible
currents and quasicurrents. Thereby, R/T is the amount of en-
tropy produced within a unit volume per unit time. One can ex-
pand the function R into the thermodynamic forces using the
same symmetry arguments as in the case of the energy density.
We obtain

R =
1

2
κij(∇iT )(∇jT ) +DαT

ij (∇iT )(∇jµα)

+
1

2
Dαβ
ij (∇iµα)(∇jµβ) +

1

2
νijklAijAkl + cJijkAijh

W
k

+
1

2
bijh

W
i h

W
j (30)

where we have introduced the transport tensors. The tensors
κij and DαT

ij , Dαβ
ij , and bij take the uniaxial symmetric form

Gij = G||wiwj +G⊥δ
⊥
ij (31)

and, additionally, there isDαβ
ij = Dβα

ij . For the viscosity tensor
νijkl we obtain

νijkl = ν1δ
⊥
ijδ
⊥
kl + ν2

(
δ⊥ikδ

⊥
jl −

1

2
δ⊥ijδ

⊥
kl + δ⊥il δ

⊥
jk −

1

2
δ⊥ijδ

⊥
kl

)
+ ν3wiwjwkwl + ν4

(
wiwjδ

⊥
kl + wkwlδ

⊥
ij

)
(32)

+ ν5
(
wiwkδ

⊥
jl + wiwlδ

⊥
jk + wjwkδ

⊥
il + wjwlδ

⊥
ik

)
Finally, the tensor cJijk takes the form

cJijk = cJ (wiεjkl + wjεikl)wl (33)

To obtain the dissipative parts of the currents and quasicurrents
we take the partial derivative with respect to the appropriate

thermodynamic force

jσDi = −
(

∂R

∂(∇iT )

)
...

= −κij(∇jT )−DαT
ij (∇jµα) (34)

jαDi = −
(

∂R

∂(∇jµα)

)
...

= −Dαβ
ij (∇jµβ)−DαT

ij (∇jT ) (35)

σDij = −
(

∂R

∂(∇jvi)

)
...

= −νijklAkl − cJijkhWk (36)

XD
i =

(
∂R

∂hWi

)
...

= bijh
W
j + cJkliAkl (37)

4 Macroscopic equations in the presence of a gel

In this section we analyze how the analysis given so far must
be modfied to incorporate the hydrodynamic and macroscopic
variables associated with the presence of a gel or an elastomer.
As already discussed in Sec. 2 we have as additional variable
the strain field, εij . Inspired by the macroscopic physical prop-
erties of nematic elastomers [33], uniaxial magnetic gels [18]
and nematic liquid crystals with D2d symmetry [34], one can
introduce in close analogy also relative rotations, Ω̃i, in the
present type of systems, if a a gel is investigated. Relative rota-
tions are introduced via

Ω̃i = δwi −Ω⊥i = δwi −
1

2
wj (∇iuj −∇jui) (38)

where the vector ui describes the displacement field of the net-
work. Since wi is a unit vector, w · δw = 0. The variable Ω̃i is
odd under time reversal and even under parity.

We thus find for the modified Gibbs relation

dε = · · ·+ Ψijdεij +ΣidΩ̃i (39)

where in Eq.(39) the . . . indicate all the terms already given in
Eq.(1). The same notation always applies in the following: . . .
indicate all the terms present without the gel and given above.
In Eq.(39) the additional thermodynamic quantities, the elas-
tic stress Ψij and the molecular field Σi, are defined as partial
derivatives of the energy density with respect to the appropriate
variables [13].

For the generalized energy density we have the additional
terms

ε = . . . +
1

2
µijklεijεkl

+
1

2
D1Ω̃iΩ̃i +D2

(
wjδ

⊥
ik + wkδ

⊥
ij

)
Ω̃iεjk

+εij(χ
σ
ijδσ + χρijδρ+ χαijδφα) (40)

The elastic tensor has five independent constants and takes
the form

µijkl = µ1δ
⊥
ijδ
⊥
kl + µ2

(
δ⊥ikδ

⊥
jl −

1

2
δ⊥ijδ

⊥
kl + δ⊥il δ

⊥
jk −

1

2
δ⊥ijδ

⊥
kl

)
+µ3wiwjwkwl + µ4(wiwjδ

⊥
kl + wkwlδ

⊥
ij) (41)

+µ5(wiwkδ
⊥
jl + wiwlδ

⊥
jk + wjwkδ

⊥
il + wjwlδ

⊥
ik)
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There are two contributions to the energy density due to
the coupling between the strain field and the new variables as-
sociated with the relative rotations. One is proportional to D1

and the other proportional to D2. One can interpret these coef-
ficients as a measure for the coupling strength of the dynamic
preferred direction to the polymer network.

Now we are left with the couplings between the scalars ρ,
c and σ and the strain field. These tensors take the form

χfij = χf||wiwj + χf⊥δ
⊥
ij (42)

where f can be either ρ, σ or α.
We now give the modified expressions for the conjugated

variables in terms of the hydrodynamic and macroscopic vari-
ables. We obtain

Ψij =

(
∂ε

∂εij

)
...

= +µijklεkl +D2(wjδ
⊥
ik + wiδ

⊥
kj)Ω̃k

+χσijδσ + χρijδρ+ χαijδφα (43)

Σi =

(
∂ε

∂Ω̃i

)
...

= D1Ω̃i +D2(wjδ
⊥
ik + wkδ

⊥
ij)εjk (44)

δT =

(
∂ε

∂δσ

)
...

= · · ·+ χσijεij (45)

δµ =

(
∂ε

∂δρ

)
...

= · · ·+ χρijεij (46)

δµα =

(
∂ε

∂δφα

)
...

= · · ·+ χαijεij (47)

and where the other thermodynamic forces are unchanged by
the presence of a gel-like structure.

For the two additional macroscopic variables there are the
following two additional dynamic equations

∂tεij + vk∇kεij + Yij = 0 (48)

∂tΩ̃i + vk∇kΩ̃i + Zi = 0 (49)

For the reversible currents we obtain the following modi-
fied expressions up to linear order in the thermodynamic forces

jσRi = · · ·+ ξTRij ∇lΨjl (50)

jαRi = · · ·+ ξαRij ∇lΨlj (51)

σRij = · · · − Ψij + ξσRijkΣk (52)

Y Rij = −Aij + ξY Rijk Σk

+
1

2
λW

[
∇i(∇× hW )j +∇j(∇× hW )i

]
−1

2

[
∇i
(
ξRjk∇lΨkl + ξTRjk ∇kT + ξαRjk ∇kµα

)
+i←→ j] (53)

XR
i = · · ·+ λW εijk∇j∇lΨkl − cRJjkiAjk + ξXRij Σj (54)

ZRi = τRijΣj − ξXRij hWj − ξσRkliAkl − ξY Rkli Ψkl (55)

We have now the additional current for the strains and
the additional quasicurrent of relative rotations. The additional
quasicurrent of relative rotations has counter terms in XR

i , σRij
and Y Rij . These terms describe the dynamic coupling of relative

rotations to the variableWi, the momentum density and the net-
work respectively. The first coupling – mediated by the tensor
ξXRij – is a term that exists neither in nematic liquid crystalline
elastomers [35] nor in superfluid 3He-A, while the second cou-
pling – ξσRijk – already appeared in nematic liquid crystalline
elastomers. The third coupling – ξY Rijk – is also unknown from
nematic elastomers and superfluid 3He-A. As the material ten-
sors in Eqs. (21) and (22), the second rank reversible tensors
have to be odd under time reversal and take the antisymmetric
form

ξgRij = ξgRεijkwk, τRij = τRεijkwk,

and ξRij = ξRεijkwk (56)

where g can either be α, X , or T . For the additional third rank
reversible coupling tensors we find

ξσRijk = ξσR
(
wiδ
⊥
jk + wjδ

⊥
ik

)
,

and ξY Rkli = ξY R (wkεlip + wlεkip)wp (57)

The dissipation function R acquires the terms

R = · · ·+ ξTij(∇iT )(∇kΨjk) + ξαij(∇iµα)(∇kΨjk)

+ξσijkAijΣk +
1

2
ξij(∇kΨik)(∇lΨjl)

+
1

2
τijΣiΣj + ξXijΣih

W
j (58)

where the additional tensors ξTij , ξ
α
ij and ξij are of the uniaxial

symmetric form, Eq.(42)

ξij = ξ||wiwj + ξ⊥δ
⊥
ij (59)

while τij and ξXij only have a transverse component

τij = τδ⊥ij and ξXij = ξXδ⊥ij (60)

due to the fact that only the parts of the relative rotations per-
pendicular to the preferred direction contribute to the entropy
production [35]. Finally the tensor ξσijk takes the form

ξσijk = ξσ (wiεjkl + wjεikl)wl (61)
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This leads to the modifications in the dissipative parts of
the currents and quasicurrents

jσDi = −
(

∂R

∂(∇iT )

)
...

= · · · − ξTij∇kΨjk (62)

jαDi = −
(

∂R

∂(∇jµα)

)
...

= · · · − ξαij∇kΨjk (63)

σDij = −
(

∂R

∂(∇jvi)

)
...

= · · · − ξσijkΣk (64)

Y Dij =

(
∂R

∂Ψij

)
...

=

−1

2
∇i
(
ξjk∇lΨkl + ξTjk∇kT + ξαjk∇kµα

)
−1

2
∇j
(
ξik∇lΨkl + ξTik∇kT + ξαik∇kµα

)
(65)

ZDi =

(
∂R

∂Σi

)
...

= τijΣj + ξXij h
W
j + ξσkliAkl (66)

XD
i =

(
∂R

∂hWi

)
...

= · · ·+ ξXijΣj (67)

5 The influence of a macroscopic hand

All biologically active systems are characterized by the pres-
ence of a microscopic hand. In this section we consider what
happens if there is an intrinsic macroscopic handedness on av-
erage for a system with an axial dynamic preferred direction.
This case is characterized by the presence of a pseudoscalar
quantity, q0, which behaves like a scalar under all symmetry
operations except for the ones containing parity. That is, the
system breaks parity dynamically on the macroscopic scale. In
the following we outline how the considerations given in the
last sections have to be modified.

For the generalized energy density we find

ε = ε0 + K̃2q0[w · (∇×W) +
1

2
q0]

−q0[w · (∇×W) + q0][ταδφα + τσδσ + τρδρ] (68)

where ε0 denotes all the nonchiral terms (cf. Eq.(3)) and where
K̃2 is usually taken as equal to the twist elastic constant K2

[12], although there is no need for this special choice, which
indeed leads to contradictions with experiments [36]. Just as
for ordinary cholesterics, the spontaneous formation of a he-
lical structure arises as a direct consequence of broken parity
symmetry in a fluid system. The cross-coupling terms ∼ τα, τρ
and τσ in the generalized energy (eq.(68)) are the analogues
of the static Lehmann terms known from cholesteric materials
[37–39]. This type of effects has become of central interest re-
cently in connection to the Langmuir layer experiments at fluid
- air interfaces performed by Tabe’s group [40, 41], which are
also thought to be of high relevance for transport phenomena
associated with rotors on length scales microns (microscale).

Next we analyze the modifications in the dissipation func-
tion providing additional dissipative channels due to the pres-
ence of a macroscopic hand. We find

R = R0 + q0εijkhjwk(ψα∇iµα + ψσ∇T + ψeEi)

+ q0Aij(ζ
σ
ijk∇kT + ζeijkEk + ζαijk∇kµα) (69)

where R0 denotes all the nonchiral contributions given in
Eq.(30) and where we have also incorporated the effect of
an electric field, Ei. The contributions ∼ ψα, ψσ and ψe are
the analogues of the dissipative Lehmann terms familiar from
cholesteric and chiral smectic liquid crystals [37–39]. The third
rank tensors between symmetrized velocity gradients, Aij ,
which are associated with extensional flow, and the thermody-
namic forces∇kT (temperature gradients), Ek (electric fields)
and ∇kµc (gradients of the chemcial potential associated with
the concentration) take the form

ζijk = ζ1δ
⊥
ijwk + ζ2wiwjwk + ζ3(wiδ

⊥
jk + wjδ

⊥
ik) (70)

An analogue of these terms has been written down in ref.
[42] for the case of temperature gradients for cholesteric liquid
crystals in an external magnetic field. We would like to em-
phasize, however, that in the present case these coupling terms
arise due to the presence of the dynamic axial preferred di-
rection and that therefore an additional external field is unnec-
essary. Naturally the additional coupling terms one can write
down for an external magnetic field (replacing w by a mag-
netic field direction, Ĥ), can be used to modify the strength as
well as the direction of the type of cross-coupling effects just
discussed.

To outline the consequences of one of these cross-coupling
terms, we just consider the electric current, jei

jek =
δR

δEk
= ζeijkAij (71)

and we read off immediately from eq.(71) that there is an elec-
tric current induced by flows. Or, to be more specific, for ex-
ample, for a shear flow in the x − y - plane (∼ ζe1 ) we predict
an electric current in the direction perpendicular to this plane.

To find out whether there are also reversible dynamic cou-
pling terms due to broken parity in a system with an axial dy-
namic preferred direction, we investigate coupling terms be-
tween the group of macroscopic variables, which are even un-
der time reversal (δσ, δφα, Pi) with the group of variables that
are odd under time reversal (gi,Wi). We obtain for the cross-
coupling terms involving symmetrized velocity gradients and
the stress tensor

jσRi = · · ·+ q0χ
σ
ijkAjk (72)

jeRi = · · ·+ q0χ
e
ijkAjk (73)

jαRi = · · ·+ q0χ
α
ijkAjk (74)

σRij = · · ·+ q0(χ
α
ijk∇kµα + χeijkEk + χσijk∇kT ) (75)

where . . . stands above as well as in the following for all the
nonchiral terms given in previous sections and where we have
for the structure of the third rank tensors

χξijk = χξ(εikmwjwm + εjkmwiwm) (76)

From these equations we can conclude in a straightforward
way, that, for example, a spatially varying vorticity leads to
temperature variations. We also note that these terms also ex-
ist for ordinary cholesteric and chiral smectic liquid crystals,
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since the χijk contain an even number of wi’s, so can be re-
placed by ni’s in the case of cholesteric liquid crystals etc. Ap-
parently this type of coupling terms has not been considered
before, however.

For the coupling terms to the thermodynamic force associ-
ated with the dynamic axial preferred direction we find

jσRi = · · ·+ q0ξ
σ
ijhj (77)

jeRi = · · ·+ q0ξ
e
ijhj (78)

jαRi = · · ·+ q0ξ
α
ijhj (79)

XR
i = · · ·+ q0(ξ

α
ij∇jµα + ξeijEj + ξσij∇jT ) (80)

with ξij = ξ1δ
⊥
ij + ξ2wiwj . There is no analogue of this type

of cross-coupling terms in ordinary cholesteric liquid crystals
due to the ni → −ni symmetry in the latter case.

We close this section by pointing out that the macroscopic
system discussed here appears to be the first complex fluid,
which breaks time reversal symmetry and has a macroscopic
hand. Fluid systems showing macroscopic handedness include
so far cholesteric and chiral smectic liquid crystalline phases,
while as complex fluids breaking time reversal symmetry two
of the superfluid phases of 3He, namely 3He-A and 3He-A1

[43] come to mind.

6 Some simple solutions

In this section we discuss two possible experiments to detect
some of the unusual cross–coupling effects present in systems
with a macroscopic dynamic preferred direction of axial na-
ture. In the gel system we find a reorientation of the preferred
direction within the plane in which a strain rate is applied as
well as out of this plane due to relative rotations and in a fluid
system, which has additionally a macroscopic hand, we predict
the rotation of the preferred direction in a temperature gradient.

6.1 Dynamic strain induced reorientation of the preferred
direction

Here we discuss one effect closely related to the macroscopic
variables associated with relative rotations. These variables de-
scribe, as already mentioned, the relative rotations between the
preferred direction and the polymer network. We apply a con-
stant strain rate and determine the change of orientation of
the preferred direction. We take the dynamic preferred direc-
tion as the x−direction and the strain rate to be applied in the
x− y−plane.

We are looking for spatially homogeneous, stationary so-
lutions. In this case the dynamic equations for the momentum
density and the scalars ρ, σ and φα are satisfied automatically.
The remaining dynamic equations (17), (48) and (49) require
the quasi-currents Xi, Zi and Yij to vanish, which leads to the
conditions, cf. Eq.(24), (37), (53-55), (65-67)

Xi = bRijh
W
j + ξXRij Σj − cRJjkiAjk

+bijh
W
j + ξXijΣj + cJkliAkl = 0 (81)

Zi = τRijΣj − ξXRij hWj − ξY Rkli Ψkl − ξσRkliAkl
+τijΣj + ξXij h

W
j + ξσkliAkl = 0 (82)

Yij = ξY Rijk Σk −Aij = 0 (83)

where the homogeneity condition for the variables and conju-
gate quantities has been used.

We need to close the set of equations (81-83) by using the
static constitutive relations, cf. Eqs.(12), (43) and (44), in the
homogeneous case

hWj = αδWj (84)

Ψkl = µklmnεmn +D2(wkδ
⊥
lm + wlδ

⊥
km)Ω̃m (85)

Σk = D1Ω̃k +D2(wmδ
⊥
kn + wnδ

⊥
km)εmn (86)

We consider the case of a constant strain rate in the x-y
plane, whereAkl = Sδkyδlx. and where the magnitude ofWi is
constant but only its direction is changing, which gives δW =
W0δw. The reorientations δw as a function of the strain rate
S are the sought after quantities. Performing a straightforward,
but lengthy calculation, which closely parallels that given for
the reorientation of the magnetization in a uniaxial magnetic
gel [18], we find for the linear deviations from the orientation
before the external force is applied

W0δwy

= −
−bR

(
ξX + 2ξY R cJ

)
+ b⊥

(
ξXR − 2ξY R cRJ1

)
2ξY R α

(
b2⊥ + bR

2
) S

(87)
W0δwz

= −
b⊥
(
ξX + 2ξY R cJ

)
+ bR

(
ξXR − 2ξY R cRJ1

)
2ξY R α

(
b2⊥ + bR

2
) S

(88)

while to first order (in S) the x component of w is unchanged,
since wx =

√
1− w2

y − w2
z = 1−O(2).

For this set–up we thus predict a rotation of the dynamic
preferred direction within the plane in which the strain rate is
applied, as well as out of this plane. Both rotations are propor-
tional to the applied external force (the rate S) and inversely
proportional to the stiffness (α) of the preferred direction as
can be seen from Eqs.(87,88). This effect is due to the variables
associated with relative rotations, because all contributions are
proportional to either ξXR, ξX or ξY R, which represent the dy-
namical coupling of relative rotations to the dynamic preferred
direction and the strain field respectively. This effect only ex-
ists for an active state, where a finite W0 is present and where
the preferred direction is dynamical and of the axial type. The
change of the dynamic preferred direction should be easily ob-
servable optically.

6.2 Rotation of the preferred direction in a temperature
gradient

In the following we show that for a fluid system (without elas-
tic and relative rotational degrees of freedom) with handedness
and, thus, with a helical orientation of W, a temperature gra-
dient or a temperature difference applied along the helical axis
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can generate a rotation of W. To be specific we consider a thin
film geometry as it is typically the case for dynamic investiga-
tions of freely suspended smectic films [44, 45] or for mono-
layers at air - liquid interfaces [40,41]. We take the helical axis
to be in z− direction and thus the film plane to be in the x− y-
plane. For simplicity we first assume the absence of in-plane
flow and discuss its relevance later. For the in-plane preferred
direction we then have ŵ = (cosϕ, sinϕ), and we assume a
constant degree of ordering of the axial dynamic preferred di-
rection W.

Applying the temperature difference ∆T along the helical
axis we find from Eqs. (68) - (80)

ϕ̇ = q0∆T (τσb⊥ + ψσT0/Cv) (89)

where T0 is the mean temperature and where Cv is the specific
heat at constant volume. τσ and ψσ are the static and dissipative
Lehmann effects, respectively, associated with entropy varia-
tions. b⊥ is the analogue of the director diffusion constant γ−11
familiar from ordinary nematic and cholesteric liquid crystals.
Eq.(89) describes a spatially homogeneous rotation of the pre-
ferred direction, for which the molecular field associated with
the preferred direction, hWi vanishes. Thus we arrive at the con-
clusion that a close analogue of the Lehmann effect found first
by Lehmann [46] is also possible for a phase, which breaks
time reversal symmetry.

This prediction also allows a crucial test concerning the in-
fluence of a macroscopic hand. In the absence of macroscopic
chirality the phenomenon predicted here does not exist, since
the pseudoscalar, q0, vanishes identically and thus no uniform
rotation of ŵ is possible in a uniform temperature difference or
temperature gradient.

It is straightforward to check whether there are any changes
in the analysis given above, when the assumption of the ab-
sence of flow is relaxed. Analyzing the influence of the dis-
sipative contributions ∼ ζσijk from the dissipation function
(eq.(69)) and of the reversible contributions ∼ χσijk in eq.(75),
we find that there is no flow in the plane perpendicular to the
helix for a homogeneous orientation of the dynamic preferred
direction in this plane. Conversely, any deviation of the applied
temperature gradient from the direction of the helical axis leads
to a flow.

We close this subsection by pointing out, that an analo-
gous effect is also expected if one replaces the temperature
difference/gradient by a concentration difference/gradient, by
an electric field or by a uniaxial pressure difference/gradient
applied along the same direction.

7 Summary and conclusions

In this paper we have presented the macroscopic dynamic equa-
tions for an active medium with an axial dynamic preferred di-
rection. This description is addressing systems for which one
has collective rotational motions as, for example, for flagella.
Our analysis shows that there are, from a hydrodynamic point
of view, similarities to systems, which are physically quite dif-
ferent, namely to one of the superfluid phases of 3He, 3He -
A and to uniaxial magnetic gels. To demonstrate the overlap
with the latter system it turns out to be crucial to incorporate

the gel-like behavior leading to the strain field and to relative
rotations as additional macroscopic variables. We also present
the macroscopic equations for the case of an additional macro-
scopic hand leading to a combination of coupling terms in the
hydrodynamic regime, which has never been found before for
other macroscopic systems. As two examples we show how an
applied strain rate or an external temperature gradient can give
rise to an unconventional reorientation of the axial dynamic
preferred direction.
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[21] D. Svenšek, H. Pleiner, and H.R. Brand, unpublished.
[22] J.K. Parrish and L. Edelstein-Keshet, Science 284, 99 (1999).
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