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Abstract: We discuss the local and global symmetry of chiral smectic C
side-chain polymers. We argue on the basis of simple Ginzburg-Landau ex-
pansions that in polymeric systems the local symmetry can be C1 (compared
to the conventional C2 symmetry), which gives globally (i.e. if averaged over
many helical pitches) a C∞ symmetry (compared to the conventional D∞
symmetry). As a consequence ferroelectricity (or antiferroelectricity) has a
non-vanishing component along the layer normal, thus allowing longitudinal
piezoelectric and pyroelectric effects.

INTRODUCTION

Conventionally the structure of low molecular weight smectic C∗ liquid crystals is
described as a tilted layer structure, where the preferred direction (the director n̂)
rotates conic helically when going from one layer to the next, with n̂ keeping a fixed
oblique tilt angle with the helix axis, which is parallel to the layer normal1. This pic-
ture is obtained from a Ginzburg-Landau functional using a two-dimensional order
parameter2 (tilt angle and tilt direction) and the D∞ symmetry for the molecules
(i.e. n̂ to –n̂ symmetry). Due to the lack of inversion symmetry a contribution
to the energy linear in the twist becomes possible, which leads to the conic helical
structure with C2 symmetry for every layer locally. This implies the existence of
a polar direction in every layer (the polarization), which is perpendicular to both,
the helical axis and the director. This polar direction is a local two-fold rotational
symmetry axis, spiraling (untilted) about the helix axis. In a coarse grained de-
scription, averaged over many pitch lengths, the symmetry is D∞, with the helical
axis as preferred direction, and the polar axis (the polarization) is averaged out.
The existence of the two-fold local rotational symmetry axis shows that the heli-
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cal axis cannot be a polar axis. This implies that there is no ferroelectricity (or
antiferroelectricity) along the helical axis (the layer normal) and no longitudinal
piezoelectric effect.

Recently the existence of a piezoelectric effect has been demonstrated
experimentally3 in elastomeric smectic C∗ liquid crystals. This was paralleled by the
experimental discovery of longitudinal piezoelectricity in cholesteric elastomers4,5,
where a compression along the helical axis results in a static voltage parallel to
the helical axis. It is obvious that the conventional D2 local (or D∞ global) sym-
metry of cholesteric liquid crystals is incompatible6 with the observed longitudinal
piezoelectric effect. The explanation in ref. 7 assumes that there is an anisotropy
in the plane perpendicular to the helical axis. This is in contradiction with the
experimental results and therefore the analysis of ref.7 is inapplicable. Thus, at
least some polymeric and elastomeric cholesteric liquid crystal systems must have
unconventional structures, some possibilities of which are discussed in ref. 6.

In this communication we will argue that polymeric or elastomeric chiral
smectic C∗ systems may also show unconventional structures of lower symmetry
than usual. As a result piezo-, pyro- and ferro- (or antiferro-) electricity along the
layer normal is possible in such structures. In the following we discuss two different
unconventional structures and their origin due to the global or local orientation of
the polymeric backbone.

CONFORMATIONAL ANISOTROPY

Liquid crystalline (side-chain) polymers are known, experimentally8,9 as well as
theoretically10, to exhibit anisotropic backbone configurations in their nematic
state. This is due to the nematic ordering of the side-chains, which by steric and
other interactions reduces anisotropically the volume the polymeric backbones can
explore entropically. It seems natural to assume that this conformational anisotropy
is still present (or rather even more pronounced) in the smectic C∗ phase. Thus
we are left with three preferred directions, assuming that the helical axis remains
parallel to the layer normal: The director n̂, spiraling conic helically around the
layer normal (or helix axis) p̂, and the conformational anisotropy axis l̂. If acci-
dentally l̂ is parallel to p̂, then this is a conventional smectic C∗ structure, i.e. of
local C2 symmetry with the symmetry axis (the polar axis or polarization) within
the smectic plane (perpendicular to p̂). However, there is no reason why the angle
between n̂ and l̂ should everywhere be equal to the tilt angle and we therefore
expect in general, p̂ 6= l̂, to be the generic case. Then the local symmetry is C1

almost everywhere, i.e. except for the planes, where n̂, l̂, and p̂ are coplanar. This
implies a longitudinal component (parallel to p̂) of the polarization changing sign
at the planes of coplanarity, thus describing antiferroelectricity. With the conic
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helical director
n̂ = (êx cos q0z + êy sin q0z) sin θ + êz cos θ, (1)

where 2π/q0 is the pitch and θ the tilt angle, and with l̂ = (êx cosφl +
êy sinφl) sin θl + êz cos θl, where θl is the angle between l̂ and p̂ = êz and φl is
the (constant) azimuthal angle of the projection of l̂ onto the (arbitrary) frame êx

and êy, we can construct a helix independent polar vector (n̂× l̂)× (p̂× l̂) which
has the longitudinal component

1
2

sin θ sin 2θl sin(q0z − φl) ≡ Pz (2)

showing the (longitudinal) antiferroelectric behaviour described before eq.(1). If l̂
is parallel (θl = 0) or perpendicular (θl = π/2) to p̂, there is no such longitudinal
component.

If a conic helical structure is unwound by the presence of a wall, e.g. via
the planar boundary condition n̂ ⊥ êx at x = 0, two favourable domains (±) with
n̂ = ±êy sin θ + êz cos θ emerge. For conventional structures the two domains are
energetically equivalent, but with opposite polarization P± = ∓P0êx, while taking
into account the longitudinal vector (2) the polarizations of the two domains

P± = ∓(P̃0êx + Pzêz) (3)

are not perpendicular to the wall but still opposite in direction and equal in amount.

LOCAL OBLIQUE BACKBONE ORDER

In the preceding section we have discussed the possible influence of the global
anisotropy of the backbone conformation on the liquid crystalline structure. Now
we want to investigate the influence of the backbone on a local scale. Here we
assume that the local interaction between side-chains and backbone segments are
dominant and lead to a preferred relative angle between the orientation of the side-
chains and the backbone segments to which the former are attached. This relative
angle, ψ, is often found to be near π/2, although its precise value is not important
for the following discussion.

In a smectic A liquid crystalline side-chain polymer a relative angle ψ near
π/2 allows the backbone segments to lie predominantly in the planes perpendicular
to the layer normal and to keep complete orientational randomness of the backbone
segments in these planes. In a tilted smectic phase however, a fixed relative angle
ψ forces the backbone segments, either to lie in the layer planes but with rather
restricted orientational freedom within the layers, or to be also tilted out of the
layers. The former situation is rather unlikely, since it contradicts the entropic
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constraints for the polymer chains to have predominantly random orientation and
it is incompatible with the fact that the backbone segments are connected in the
form of a chain. In the latter case an additional preferred direction (out of the layer
planes) exists due to tilt of the backbone segments. Describing a possible backbone
segment order by an orientational order parameter Mij = M(m̂im̂j − (1/3)δij),
the order and orientation of the backbone segments in a smectic C∗ phase (with
the layers kept fixed) are governed by a Ginzburg-Landau functional in terms of
Mij and its gradients. It contains e.g. terms linear in ∇iMjk due to the existence
of the nematic order parameter Qij , which describes the side-chain order. For
simplicity we will take the relative angle ψ to be exactly π/2 everywhere, i.e. m̂ is
perpendicular to n̂ (1)

m̂ = − [(êx cos q0z + êy sin q0z) cos θ − êz sin θ] cosχ

+(êx sin q0z − êy cos q0z) sinχ
(4)

where the (still undetermined) tilt angle of m̂, θm, (i.e. the angle between m̂ and
p̂) is related to the angle χ by cos θm = sin θ cosχ. The Ginzburg-Landau free
energy can then be written as

fm =M(D1 cos2 θm + q0[E1 + E2 cos2 θm] + q20 [F1 + F2 cos2 θm])

+M2(D2 + q20 [G1 +G2 cos2 θm +G3 cos4 θm])
(5)

Minimizing eq.(5) with respect to the tilt order parameter M reveals that M is
always non-vanishing. This leads to fm = cos2 θm(−α̃ + β̃ cos2 θm + γ̃ cos4 θm),
which is then minimized with respect to θm. As a result there is a finite tilt, i.e.
0 < θm < π/2 the actual value depending on the Ginzburg-Landau coefficients
in eq. (5) (the case θm = π/2 has been excluded before for physical reasons and
similarly the case θm = 0 is unphysical).

Clearly a biaxial conic helical structure with m̂ und n̂ given by (4) and
(1), respectively, has C1 symmetry locally and C∞ symmetry globally when av-
eraged over many pitch lengths11 (except for the special case when n̂, m̂, and p̂
are coplanar). It exhibits a polar vector with a longitudinal (i.e. parallel to p̂)
component

(n̂× m̂)× (p̂× m̂) |z= m̂z[m̂ · (n̂× p̂)] = cos θm cos θn×m ≡ Pz (6)

with θn×m the tilt angle of the vector n̂ × m̂. This longitudinal component of
the polarization is constant everywhere and thus of truely ferroelectric nature. In
an unwound situation, where e.g. the director is planar to a wall (x = 0), the
total polarization of the two possible domains P± = ∓P0êx + Pzêz is no longer
perpendicular to the wall nor are the two domains equivalent. In addition there
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is a longitudinal piezoelectric effect as discussed in the Introduction in contrast to
the conventional smectic C∗ structures.

SUMMARY

In the preceding two sections we have discussed the possible structural differences
between polymeric and low-molecular-weight smectic C∗ liquid crystals. First we
looked at the influence of a global, conformational ordering of the backbone chain
on the symmetry of the system, while in the second part we focused on the impact
of the local ordering of backbone segments. In nature one can expect both effects to
occur and it will depend on the specific system which one will be more important.
The point we want to stress is that the presence of the backbone chain generically
leads to structural differences between polymeric and low-molecular-weight systems,
where the former are generally of lower symmetry than the latter. One implication
of this difference is the existence of a polar vector along the layer normal (or the
helix axis) in many cases leading to longitudinal ferro- or antiferroelectricity and
longitudinal piezoelectricity in polymeric systems.
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