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ABSTRACT

An effective macroscopic model of magnetorheological fluids in the viscoelastic regime is proposed. Under the appli-
cation of an external magnetic field, columns of magnetizable particles are formed in these systems. The columns are
responsible for solid-like properties, such as the existence of elastic shear modulus and yield stress, and are captured
by the strain field, while magnetic properties are described by the magnetization. We investigate the interplay of
these variables when static shear or normal pressure is imposed in the presence of the external magnetic field. By
assuming a relaxing strain field, we calculate the flow curves, i.e. the shear stress as a function of the imposed shear
rate, for different values of the applied magnetic field. Focusing on the small amplitude oscillatory shear we study the
complex shear modulus, i.e. the storage and the loss moduli, as a function of the frequency. We demonstrate that
already such a minimal model is capable of furnishing many of the key physical features of these systems, like yield
stress, enhancement of the shear yield stress by pressure, threshold behavior in the spirit of the frequently employed
Bingham law and several features in the frequency dependence of storage and loss moduli.
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I. INTRODUCTION

Magnetorheological (MR) fluids are a class of fluids, which
experience significant changes upon application of an exter-
nal magnetic field. Examples of such changes are a fast and
reversible acquisition of solid like properties and a dramatic
increase of the viscosity. This makes such systems suitable
for many applications such as shock absorbers, clutches and
brakes.

Introduced in Ref. 1, MR fluids are composed of micron
sized magnetizable particles, typically suspended in oil. Un-
der the influence of the external magnetic field, gap-spanning
chains or columns of the particles in the direction of the field
are formed and a finite stress, also called the yield stress,
is needed to break these structures and initiate flow. The
columnar structure can be explained by the induced dipole
interaction between the particles, which is attractive when
they are parallel to the magnetic field. The application of the
magnetic field also leads to a significant rise in the viscosity.
For reviews of general aspects of MR fluids cf. Ref. 2–6.

Several microscopic and macroscopic models have been de-
veloped to predict the column formation and the dependence
of the yield stress on the applied magnetic field. Due to the
similar form of the interaction between the particles (dipo-
lar), also the studies of the electrorheological fluids are rel-
evant for the description of MR fluids. Microscopic models
usually assumed single chain structures, which are deformed
in the shear plane,7–11 although certain refinements on the
electrorheological fluids have been done taking into account

a)Electronic mail: tilen.potisk@uni-bayreuth.de

the crystal structure of the particle aggregates.12 Theoretical
studies of rheological properties are much less frequent. In
Ref. 13 the so-called independent droplet model was used to
model the shear-thinning behavior. Other studies focus on
single chains14,15 or simulations of individual particles.16

Macroscopic models usually rely on the Maxwell stress ten-
sor and magnetostriction effects.9 In the case of electrorheo-
logical fluids, the anisotropy caused by the chains was treated
using a director like degree of freedom known in nematic liq-
uid crystals.17–19 In Ref. 20 the static yield stress was cal-
culated for a fluid with lamellar structure. To predict the
rheological properties, the two fluid approach, where the sol-
vent phase and the particle phase are treated separately, has
been used21,22. With this approach also various aspects of
pattern formation including sheets, disk-type structures in a
rotating field etc. have been analyzed.23–25

The aim of this paper is to construct a minimal macro-
scopic model for MR fluids, that is capable of capturing the
main physical effects found in static as well as dynamic ex-
periments. To derive the static and the dynamic equations,
a symmetry based approach is used26. One of its advantages
with respect to microscopic approaches is the applicability to
different systems and geometries.

The article is organized as follows. The macroscopic model
is introduced in Sec. II, followed by numerical analysis of
the static shear deformation in the external magnetic field
in Sec. III A. In Sec. III B the effects of the normal pres-
sure on the static yield stress are considered. Flow properties
are discussed by analyzing shear stresses due to stationary
(Sec. IV A) and oscillatory (Sec. IV B) imposed shear flow.
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II. MACROSCOPIC MODEL

Generally, in a fluid mixture the macroscopic variables are
mass density ρ, momentum density g, entropy density σ, and
concentration density c. For magnetic fluids there is in ad-
dition a magnetization field M, which is zero in equilibrium
in the absence of an external magnetic field. For MR fluids,
in particular, an external field triggers columnar structures
of the magnetizable particles due to the attractive magnetic
forces between the particles that lead to solid-like, elastic
properties. Therefore, we introduce a strain field εij as a
macroscopic variable that is zero in the field-free case and
finite in a magnetic field. For the dynamics we restrict our-
selves to the regime, where the viscoelastic nature of the MR
fluids can be described by a relaxational dynamics for the
strain field.

In order to make the model as simple as possible, we dis-
regard the density ρ, the entropy density σ, and the concen-
tration c as variables, effectively meaning they are constant.
This implies incompressibility and the neglect of temperature
and concentration gradients (sedimentation). Thus, we deal
with elastic deformations and flow, as well as the magnetiza-
tion. Furthermore, we will consider all material tensors only
in their isotropic form. This seems to be a reasonable simpli-
fication, since we only consider shear in the plane perpendicu-
lar to the magnetization (and compression along the field). It
turns out that the static and the dynamic theoretical behav-
ior is in qualitative agreement with experiments. Even the
anisotropy of the ultrasound velocity can be explained with-
out invoking anisotropic material tensors.27–29 We emphasize
that the introduction of a director in the present context is
inappropriate, since it has the wrong behavior under time re-
versal. If anisotropy is taken into account, all the material
tensors acquire additional terms due to the lower symmetry.
Furthermore, in an elastic system with an orientational or-
der one must in principle consider the additional variable of
relative rotations between the network and the preferred di-
rection. These relative rotations play an important role in the
description of nematic gels30,31. Throughout most of this pa-
per we concentrate on isotropic aspects of material properties
and therefore discard relative rotations.

A. Statics

The statics of a macroscopic system is best set-up by con-
sidering its total energy density ε. The Gibbs relation, a man-
ifestation of the first law of thermodynamics, relates changes
of the macroscopic variables to energy changes

dε = dε0 + vidgi + hM
i dMi + ψijdεij , (1)

where dε0 represents the neglected macroscopic degrees of
freedom and is given in Ref. 26. The thermodynamic con-
jugates to the macroscopic variables considered here are the
bulk velocity vi, the magnetic molecular field hM

i and the
elastic stress ψij .

The statics is described by the energy density ε(εij ,M,g)32

ε = ε0 − µ0HiMi +
1

2
αM2 +

1

4
β(M2)2

+
1

2
cijklεijεkl −

1

2
γijklεijMkMl +

1

2ρ
g2, (2)

where the coupling to an external magnetic field, ∼ µ0H, en-
sures the induced magnetization to be parallel to the field,
while the next two terms govern the magnitude of the mag-
netization (modulus) M ≡

√
M2 that is induced by the field.

The form given in Eq. (2) is suitable for rather small fields,
while in the general case the α and β terms have to be re-
placed by a more complicated function f1(M2) that can be
taken from experimental results.

The material tensors cijkl and γijkl describe elasticity and
magnetostriction, respectively. In their standard isotropic
form32

cijkl = c1M
2δijδkl + c2M

2(δikδjl + δilδkj), (3)

γijkl = γ1δijδkl + γ2(δikδjl + δilδkj) (4)

where we have assumed here that the elastic moduli are pro-
portional to M2. This ensures that elasticity, and therefore
the elastic tensor cijkl, vanishes, when there are no columns,
i.e. when the magnetization M is zero. This quadratic de-
pendence is the simplest assumption, but can be replaced by a
more complicated (even discontinuous) function f2(M2) pro-
vided f2(M2) → 0 for M → 0. The dependence on M2

(rather than Mi) is due to the time reversal behavior of M.
As usual, the isotropic tensors cijkl and γijkl have two coef-

ficients each, where the terms ∼ c1 and ∼ γ1 describe the en-
ergy associated with the compressive or elongational strains,
while the coefficients c2 and γ2 correspond to the shear strains.
In the examples of Secs. III A and III B we assume that the
compression is always parallel to the magnetic field and that
for the shear deformation the shear plane contains the mag-
netic field. For completeness, if uniaxial anisotropy of the
system is considered, with the axis along m = M/|M|, one
gets additional terms in Eqs. (3)-(4)33:

c̃ijkl = c̃1δ
⊥
ijδ
⊥
kl + c̃2(δ⊥ikδ

⊥
jl + δ⊥il δ

⊥
kj − δ⊥ijδ⊥kl) + c̃3mimjmkml

+ c̃4(mimjδ
⊥
kl +mkmlδ

⊥
ij) + c̃5(mimkδ

⊥
jl +mimlδ

⊥
jk

+ mjmkδ
⊥
il +mjmlδ

⊥
ik), (5)

γ̃ijkl = γ̃1δ
⊥
ijδ
⊥
kl + γ̃2(δ⊥ikδ

⊥
jl + δ⊥il δ

⊥
kj − δ⊥ijδ⊥kl) + γ̃3mimjmkml

+ γ̃4mimjδ
⊥
kl + γ̃5mkmlδ

⊥
ij + γ̃6(mimkδ

⊥
jl +mimlδ

⊥
jk

+ mjmkδ
⊥
il +mjmlδ

⊥
ik), (6)

where δ⊥ij = δij − mimj and where c̃1, c̃2, c̃3, c̃4 and c̃5 are

all proportional to M2. As already mentioned above, here
we will not pursue these refinements and will be using the
isotropic forms Eqs. (3)-(4)

To calculate the equilibrium values of the variables, one
must first calculate the thermodynamic forces. These are
the thermodynamic conjugates of the macroscopic variables,
Eq. (1), and are derived by taking the variational derivatives
of the energy density Eq. (2) with respect to the correspond-
ing variables26:

hM
i =

δε

δMi
= (α+ βM2)Mi − µ0Hi − γ1Miεkk − 2γ2Mjεij

+ (c1ε
2
kk + 2c2εkjεjk)Mi (7)

ψij =
δε

δεij
= δij

(
c1εkk −

1

2
γ1
)
M2 + 2c2M

2εij − γ2MiMj ,

(8)

vi =
δε

δgi
=

1

ρ
gi. (9)

Thermodynamic equilibrium requires all thermodynamic
forces to be zero, i.e. hM

i = 0 and ψij = 0. For a finite
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external magnetic field, Hi = Hδiz, the conditions (7)-(9)
lead to a finite equilibrium magnetization Meq

z = µ0H/α and
a finite equilibrium strain εeqzz = (1/2)(γ1 + 2γ2)/(c1 + 2c2).
The latter is independent of the field, since the field depen-
dences of the magnetostriction and the elasticity compensate
each other. Note that our simplified linear model only applies
for finite fields and does not describe the case H ≡ 0.

B. Macroscopic dynamics

The dynamic evolution of deviations from the equilibrium
state is described by the proper macroscopic equations dis-
cussed in the following. The dynamic equations for the mo-
mentum density gi, the magnetization Mi and the strain field
εij are 32

d

dt
gi +∇j(pδij − ψij + σth

ij + σij) =0, (10)

d

dt
Mi + εijkMjωk +Xi =0, (11)

d

dt
εij + εkj∇ivk + εki∇jvk −Aij + Yij =0, (12)

where d/(dt) ≡ ∂/(∂t)+vj∇j is the material derivative, Aij =
(∇ivj + ∇jvi)/2 is the symmetric gradient of the velocity
field and the vorticity ωi = εijk∇jvk/2 corresponds to its
antisymmetric gradient.

The thermodynamic pressure, p is given by26

p = −ε+ vigi +BiHi + ε0, (13)

where B = µ0(H + M) is the magnetic flux density and
ε0 represents the neglected macroscopic degrees of freedom.
The nonlinear stress tensor contributions read in symmetrized
form 32

σth
ij = −1

2
(BiHj +BjHi) +

1

2
(ψjkεki + ψikεkj). (14)

The non-phenomenological parts of the currents, shown ex-
plicitly in Eqs. (10)-(14), are not related to any phenomeno-
logical (transport) parameters and are given by general sym-
metry and thermodynamic principles.26 We emphasize that
their structure, in particular that of the convective derivative
εkj∇ivk + εki∇jvk in Eq. (12), is uniquely determined.34,35

All those terms are reversible, meaning that they transform
under time reversal, t → −t, in the same way as the time
derivative of their appropriate variable. For a general dis-
cussion of of time reversal symmetry and its importance for
macroscopic equations we refer to Ref. 36.

The phenomenological part of the stress tensor σij , and the
quasi-currents Xi and Yij describe temporal changes of their
corresponding variables and can be written as a sum of a re-
versible (superscript R) and an irreversible part (superscript
D). They are functions of the thermodynamic forces Eqs. (7)-
(9) (Aij , h

M
i , and ψij) involving phenomenological transport

parameters. The second law of thermodynamics states that
irreversible dynamic processes always dissipate energy (trans-
fer energy to the microscopic degrees of freedom as heat) and
therefore increase the entropy. On the contrary, reversible
processes are non-dissipative and must not increase the en-
tropy.

Within linear irreversible thermodynamics37 the dissipa-
tion function R, which is proportional to the entropy produc-
tion, can be written as a bilinear form of fluxes and forces, in

our case
2R = −σijAij +Xih

M
i + Yijψji. (15)

For the reversible parts of the currents {σR
ij , X

R
i , Y R

ij } one

has to require R = 0, while the dissipative ones {σD
ij , XD

i ,

Y D
ij } fulfill R > 0.
To derive the dissipative parts of the (quasi-) currents one

writes the dissipation function R as a quadratic form in the
relevant thermodynamic forces. By taking the variational
derivative of this function with respect to the chosen ther-
modynamic force, according to Eq. (15), one gets the corre-
sponding dissipative current. The dissipation function is

R =
1

2
νDijklAijAkl +

1

2
bDhM

i h
M
i +

+
1

2

(
1/τ
)
ijkl

ψijψkl + dijkψjkh
M
i , (16)

leading to

σD
ij = −νDijklAkl, (17)

XD
i = bDhM

i + dijkψjk, (18)

Y D
ij =

(
1/τ
)
ijkl

ψkl + dkijh
M
k . (19)

As in Eqs. (3)-(4), we again assume an isotropic form of
the material tensors νDijkl and (1/τ)ijkl describing viscosity
and strain relaxation, respectively,

νDijkl = ν1δijδkl + ν2(δikδjl + δjkδil), (20)(
1/τ
)
ijkl

=
1

τ1M2
0

δijδkl +
1

τ2M2
0

(δikδjl + δjkδil) (21)

Thus, we model the viscoelastic properties of MR fluids38–43

by using the strain field as a relaxing variable. When the
columns are deformed, the particles experience a drive to re-
distribute, e.g., by permeation effects, which shows on the
macroscopic level as relaxation of the strain. In addition, we
assume that the relaxation coefficients, τ1M

2
0 and τ2M

2
0 , are

proportional to M2
0 , which is motivated by the fact that the

elastic network relaxes on longer time scales in larger magnetic
fields, i.e. it behaves more elastically. Depending on the type
of deformation, either compression or shear, the strain relaxes
with a characteristic time proportional to τ1 + 2τ2 or τ2, re-
spectively. It should be noted that τ1,2 can still be functions
of M2, which is also the case for the viscosities ν1,2 and the
magnetization relaxation bD. In the incompressible case, ν1
drops out and can be put to zero. We discard diffusion-type
contributions ∼ ∇kψij .

In Eq. (16), the material tensor

dijk = d1Miδjk + d2(Mjδik +Mkδij) (22)

represents the dissipative coupling of the elastic stress to the
magnetization. It is linear in the magnetic field to make sure
the contributions to XD

i and Y D
ij are irreversible, but an ad-

ditional M2 dependence is possible.
The reversible currents cannot be derived from the dissi-

pation function, since R ≡ 0 for the reversible case. Instead,
they are set up by collecting all possible combinations allowed
by (e.g. time-reversal) symmetry that lead to a vanishing R
in Eq. (15)

σR
ij = −νRijklAkl − cRkijhM

k , (23)

XR
i = bRijh

M
j − cRijkAjk, (24)
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Y R
ij = 0. (25)

The material tensors in Eq. (23) and (24) read32

νRijkl = νR(εikpδjl + εjkpδil + εilpδjk + εjlpδik)Mp, (26)

cRijk = cR1 Miδjk + cR2 (Mjδik +Mkδij), (27)

bRij = bRεijkMk, (28)

where cRijk has the same form as dijk in Eq. (22). To make
these currents reversible, all three material tensors have to be
odd functions in Mi and additional M2 dependences of the
parameters are possible. In the incompressible case, νR and
cR1 drop out and can be put to zero.

C. Geometry and material parameters

Throughout this paper we use the geometry of two paral-
lel plates, as shown in Fig. 1. The macroscopic variables are
assumed to be only a function of the z coordinate. The mag-
netic field will always be applied normal to the plates (along
the z axis). In Secs. III A and IV we consider shear deforma-
tions as shown in Fig. 1b, while in Sec. III B a compressive
strain (along the field direction) is additionally assumed.

H

z

x

(a) (b)

FIG. 1. Sketch of a MR fluid, confined between two parallel
plates. a) The external magnetic field is applied perpendic-
ularly to the plates, which induces a nonzero magnetization
(red arrow) along the z axis. b) MR fluid, when an additional
static shear deformation is imposed.

Here we list the values of the material parameters that
we generally use in our numerical calculations (exceptions
are indicated in the figure captions). The prefactors of the
elastic moduli are c1 = c2 = 10 Pa A−2m2 and the coeffi-
cients connected with the modulus of the magnetization are
α = 0.06 Pa A−2m2 and β = 10−8 Pa A−4m4. The values
for c2 and α are estimated by comparing the results of the
next section, Eqs. (34) and (36), to the measurements of the
static (elastic) yield stress and the value of the critical strain
in Ref. 44. For the magnetostrictive parameters we find, by
comparison of Eq. (38) with experimental results, γ2 ≈ 0.3
Pa A−2m2, cf. Sec. III A, and γ1 ≈ 1.2 Pa A−2m2, see Eq. (42)
in Sec. III B.

Among the transport parameters that we use are ν2 =
0.2 Pa s, bD = 40 A2Pa−1s−1m−2 and τ2 = 0.1 Pa s m2A−2

or τ2 = 10 Pa s m2A−2 in Sec. IV B. The coefficient, τ2, corre-
sponding to the strain relaxation, is estimated from viscoelas-
tic measurements, where, under a step shear strain deforma-
tion, the shear stress relaxed on the order of 0.01 second45 or
1 second38. This time is then compared to the characteris-
tic time-scale that shows up in our model, τel = τ2/4c2, cf.
Sec. IV B. The reversible coupling coefficient cR2 , relating the
magnetization to the symmetric velocity gradient is already
known from the dynamics of magnetic liquids,46–48 where it
was crucial to explain dynamic experiments.49,50 We use a
similar value as in Ref. 50, cR2 = 0.4.

III. STATIC DEFORMATIONS

We discuss first the relation between static deformations
and elastic stresses for different magnetic field strengths.
Since the strains are relaxing, purely static experiments can
only be performed on time scales short compared to the strain
relaxation time, where strains can effectively be described by
the static equations of Sec. II A.

A. Static shear deformation

In this section we study the static shear deformation, when
the MR fluid is confined between two parallel plates and the
upper plate is displaced parallel to the x axis. Such a geom-
etry is typically used in experiments to measure the elastic
shear stress as a function of the shear strain. Experimental
results show that the elastic shear stress first increases linearly
with the shear strain, but when the shear strain is increased
further, one typically observes a saturation in the elastic shear
stress. The value of the elastic stress, where the stress-strain
curve levels off is known as static yield stress and it is from
the application point of view desirable to have it as large as
possible. The value of the static yield stress was measured
for many different MR fluids and it increases quadratically
with the field for small fields.44 For intermediate magnetic
fields, the static yield stress increases with the power of 3/2,
which was measured experimentally,43 as well as modeled nu-
merically in Ref. 7, taking into account the saturation effects
of the magnetization of the particles. The static yield strain
does not depend on the magnetic field and is typically around
0.5%.42,44

Throughout this section we assume that the elastic shear
deformation of Fig. 1b is constant, εxz = εzx = 1

2
Γ and all

other components are vanishing. This can be achieved by a
displacement of the upper plate by u = Γêx, where Γ is called
the shear strain.

The elastic shear stress induced by the shear deformation
follows from Eq. (8), which now reads

ψxz = c2M
2Γ− γ2MxMz. (29)

while the magnetization follows from Eq. (7) reading

µ0H = αMz + c2Γ2Mz − γ2ΓMx (30)

0 = αMx + c2Γ2Mx − γ2ΓMz (31)

where β is neglected here.
These equations can be solved analytically, but the result-

ing formulas are rather involved. We will discuss and explain
the main features either using special cases or show figures of
numerical solutions.

In Fig. 2 we present the elastic shear stress as a function
of the shear strain at three different values of the applied
magnetic field. One can see that the elastic shear stress first
increases linearly, then goes through a maximum and starts
to decrease as one increases the shear strain. This can be
understood by inspecting Eq. (29) for the elastic shear stress.
The applied magnetic field induces a nonzero magnetization,
which in turn induces a nonzero elastic shear modulus. For
small values of the shear strain Γ, in particular for Γ� α/γ2
and Γ2 � α/c2, the elastic shear stress Eq. (29), increases
linearly with the shear strain

ψxz ≈
µ2
0H

2

α2

(
c2 −

γ2
2

α

)
Γ. (32)
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FIG. 2. The elastic shear stress as a function of the shear
strain γ2 = 0 at three different values of the applied magnetic
field. The black dashed parts of the curves represent the
unstable regime, where the elastic shear stress decreases with
the shear strain.

and the initial slope of the elastic shear stress increases
quadratically with the applied magnetic field.

As one increases the shear strain, the elastic shear stress
saturates and finally decreases, Fig. 2. One reason for this is
the magnetization, which decreases for increasing strains, see
Fig. 3. Disregarding the magnetostrictive parameter γ2 for

μ0H = 0.1 T

μ0� = 0.2 T

μ0� = 0.3 T

0.00 0.01 0.02 0.03 0.04 0.05 0.06
0

2

4

6

8

Γ

M

z
[ A

/ m

]

FIG. 3. The z component of the magnetization Mz as a func-
tion of the shear strain for γ2 = 0 at three different values of
the applied magnetic field.

the moment, the induced elastic shear stress reads (for any
Γ)

ψxz = µ2
0H

2 c2Γ

(α+ c2Γ2)2
. (33)

Eq. (33) provides a tool to determine the static coefficients c2
and α from the comparison of the model to the measurements
of the stress as a function of the strain. The stress-strain curve
indeed has a maximum at

Γc =

√
α

3c2
. (34)

which is called the yield strain. Taking into account γ2 per-
turbatively, e.g. for γ2

2 � αc2, it is shifted to higher strains,
Fig. 4,

Γyield ≈ Γc

(
1 +

5

8

γ2
2

αc2

)
(35)

and does not depend on the magnetic field.
The value of the maximum elastic shear stress, the static

yield stress, decreases with increasing γ2 according to

ψyield
xz ≈ 3

√
3

16

√
αc2

(
1− 3

16

γ2
2

αc2

)
µ2
0H

2

α2
. (36)

In addition, the static yield stress scales quadratically with

γ2 = 0

γ2 � 0.3 αc2

γ2 � 0.6 αc2

0.00 0.01 0.02 0.03 0.04 0.05 0.06
0

2

4

6

8

Γ

ψ
x
z
[P
a
]

FIG. 4. The elastic shear stress vs. shear strain for three dif-
ferent values of the magnetostriction coefficient γ2 at a mag-
netic field µ0H = 0.3 T. The black dashed parts of the curves
represent the unstable regime, where the elastic shear stress
decreases with the shear strain.

the applied magnetic field, (as is also visible in Fig. 2), which
is in agreement with experiments.

The magnetostriction is responsible for the tilting of the
chains of magnetizable particles. The tilt angle θ can be cal-
culated from Eqs. (30) and (31), and is proportional to γ2,

tan θ =
Mx

Mz
=

γ2Γ

α+ c2Γ2
. (37)

with the maximum tilt value

tan θmax =
γ2

2
√
αc2

(38)

which is taken at Γ =
√
α/c2.

We note in passing, that given Eq. (33) and Eq. (37) it is
obvious that tan θ and ψxz do not have their maximum at
the same Γ. As a consequence of the tilting of the chains, the
elastic stress decreases as has been discussed, above. Exper-
imentally the maximum tilt angle of the chains with respect
to the direction of the magnetic field is on the order of 10◦,
which implies γ2 ≈ 0.4

√
αc2 ≈ 3.0 × 10−1 Pa A−2m2. This

means the approximation γ2
2 � αc2, which we used for some

of the analytical results of this section is quite appropriate.

B. Effects of normal pressure

A desirable property of MR fluids is a high static shear yield
stress. This can to some extent be achieved by using a large
magnetic field, however due to the saturation of the magne-
tization also the static yield stress saturates as one increases
the magnetic field. In Refs. 51–54 it was found that, after
the application of a magnetic field, compressing the MR fluid
along the field direction strongly increases the static shear
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yield stress. Moreover, the static yield stress was found to be
linearly dependent on the applied pressure P

ψyield
xz (P ) = ψyield

xz (0) + kP, (39)

where ψyield
xz (0) is the static yield stress without compression,

and the slope k was shown in Ref. 51 to be only very slightly
increasing with the magnetic field.

Physically, the increase in the static shear yield stress can
be explained by the fact that the compression pushes the
chains of magnetizable particles to form thicker columns,
which can better resist the shear forces.

We have found that the magnetostriction coefficient ∼ γ1
accounts for these experimental findings. Since the effect of γ2
on the elastic shear stress has been discussed in the preceding
section, we will put γ2 = 0 here. The external pressure P
corresponds to an external stress ψzz = +P , from which a
compressive strain εzz is induced via Eq. (8)

εzz = +
P

c̄1M2
, (40)

where the effective longitudinal elastic coefficient is c̄1 =
c1 + 2c2. This strain comes in addition to the equilibrium
compressive strain εeqzz due to the external field, discussed in
Sec. II A.

As a result of the compression, the magnetization Mz in-
creases due to the magnetostrictive coupling ∼ γ1 (Mx van-
ishes in the γ2 = 0 approximation),

Mz ≈
µ0H

(α+ c2Γ2)
+

γ1
c̄1µ0H

P, (41)

which we have linearized in the pressure.
An increase in the magnetization leads, according to

Eq. (29), to an enhanced shear yield stress. In Fig. 5 we
show the elastic shear stress as a function of the shear strain
at three different values of the applied normal pressure.
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P = 100 Pa

P = 200 Pa
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40

�

ψ
x
z

[ P
a
]

FIG. 5. Elastic shear stress as a function of shear strain using
µ0H = 0.3 T at three different values of the applied compres-
sive pressure. The black dashed parts of the curves represent
the unstable regime, where the elastic shear stress decreases
with the shear strain.

Indeed, the elastic shear stress and its maximum (the static
yield stress) increase linearly with the pressure, Fig. 6. For
small values of the applied pressure this is described by k,
Eq. (39), which takes the form

k ≈ 9

32

γ1
c̄1

√
3c2
α
, (42)

For typical experimental values of k ≈ 1/4 one finds γ1 ≈
1.2 Pa A−2m2.

In addition, the static yield stress is shifted to higher
strains. This shift of the critical strain is also linear in the
pressure and can be observed in Fig. 5 for different values of
the field.
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FIG. 6. Static yield stress as a function of the applied com-
pressive pressure at three different values of the applied mag-
netic field.

For small values of the applied pressure one gets

Γyield ≈ Γc +
1

2

γ1α

c̄1µ2
0H

2
P (43)

showing also the 1/H2 field dependence. By measuring the
yield stress and the yield strain as a function of the pressure
one could in principle determine the coefficients γ1 and c1,
while the coefficients c2 and α could already be determined
in the shear strain experiments, see Sec. III A.

IV. DYNAMIC DEFORMATIONS

In this section we investigate the effect of the magnetic field
on the measured viscosities of MR fluids in the presence of an
applied shear flow. Experimental results show a threshold
behavior, where a finite stress, also called the dynamic shear
stress, is needed to sustain a shear flow. In addition, MR
fluids are typically found to be slightly shear thinning, which
means the viscosity decreases as one increases the shear rate.

We assume simple shear with a linear velocity profile of the
form v = γ̇zêx, where the so-called shear rate is constant for
a steady shear flow, γ̇ = γ̇0, Sec. IV A, and time-dependent
for oscillatory flow, γ̇ = γ̇0 cos(ωt), Sec. IV B, with ω the
oscillatory frequency.

For shear flow, the dynamics of the magnetic degree of
freedom, given in Sec. II, reads

− ∂

∂t
Mx = bDMx(α+ βM2 + 4c2ε

2
xz)

− 1

2
(1 + 2cR2 )Mz γ̇, (44)

− ∂

∂t
Mz = bDMz(α+ βM2 + 4c2ε

2
xz)− bDµ0H

+
1

2
(1− 2cR2 )Mxγ̇ = 0. (45)
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where we have neglected γ2, since it provided only corrections
to the main results in the static shear strain case, and we ex-
pect the same for the presence of a shear flow. The couplings
provided by the coefficient d2 are comparable and are also
neglected. We also take bR = 0, which ensures that the orien-
tation of the magnetization (of the chains) does not deviate
from the shear plane. The Eqs. (44) and (45) are equiva-
lent to those studied by Liu’s group47,48 for magnetic liquids
(where εxz = 0), when we use the identification 2cR2 = λ2 and
take β = 0.

For the elastic degree of freedom we get

− ∂

∂t
εxz =

4c2
τ2
εxz −

1

2
γ̇ (46)

Finally, the total stress tensor, the momentum density current
in Eq. (10), not only contains the elastic stress tensor ψij , Eq.
(8), but also the dissipative and reversible phenomenological
parts σD

ij , Eq. (17), and σR
ij , Eq. (23). It is given by

−σtot
xz = ν2γ̇ + 2c2M

2εxz +
1

2
(1− 2cR2 )µ0HMx

+ 2cR2 MxMz(α+ βM2 + 4c2ε
2
xz), (47)

and will be needed to set-up the stress-strain rate relations,
i.e. the apparent viscosity in Sec. IV A and the complex shear
modulus in Sec. IV B.

A. Steady shear flow

In this section we are only interested in stationary solutions
of the dynamic equations. In that case, the left hand sides of
Eqs. (44) - (46) are zero. This immediately allows to relate
the stationary shear strain to the applied shear flow

εxz = εzx =
γ̇τ2
8c2

, (48)

Of course, a stationary strain is only possible for a relax-
ing strain variable, while for permanent elasticity the strain
would increase indefinitely, when a constant flow is applied.
Equation (48) represents the stationary balance between the
increasing strain due to the shear flow and its relaxation due
to the microscopic redistribution of the particles.

With this result, Eqs. (44) and (45) can be solved for the
magnetization components Mx and Mz as functions of γ̇ and
H. This can only be done numerically due to the nonlineari-
ties involved.

In Fig. 7, the shear stress Eq. (47) is plotted as a function
of the shear rate for different values of the field. We also study
the apparent viscosity, defined by

η =
−σtot

xz

γ̇
. (49)

There are basically three regimes. For very small shear rates
there is a steep linear increase of the stress and the slope (ap-
parent viscosity η) strongly depends on the magnetic field. At
very high shear rates there is another (almost) linear stress
increase, which is much smaller than in the initial regime and
is, for very large shear rates, field independent. In between,
the transition region shows a peak structure for higher mag-
netic fields. Reducing the external field, the peak-like struc-
ture diminishes until it simply denotes the transition between

μ0H = 0.1 T
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FIG. 7. The shear stress −σtot
xz as a function of the steady

shear rate at three different values of the applied magnetic
field.

the low and high shear rate regime. A peak structure, which
gives rise to a local minimum at intermediate shear rates, can
be explained by the induced elastic stress, described by the
second term in Eq. (47). Initially this stress increases linearly
with the shear rate, which results in a steep initial slope of
the flow curve, Eq. (50). At higher shear rates the magneti-
zation modulus starts to decrease inversely with the square of
the shear rate, which decreases the elastic stress contribution
towards zero. If the applied magnetic field is large enough, a
peak structure will be observed.

The initial slope for small γ̇ can be written approximately

ηin = ν2 +
(1

4
τ2 +

(1 + 2cR2 )2

4bD

)
M2

0 (50)

where M0 = µH0/α and ν2 is the viscosity (without field)
due to the carrier fluid and the magnetizable particles sus-
pended in it. The initial slope ηin strongly increases with the
external field, which is a prediction that could be tested in ex-
periments. This is because shear flow reorients the columns
of magnetizable particles, due to the reversible coupling be-
tween flow and the magnetization via cRijk, Eq. (27). The
z-component of the magnetization is basically given by the
magnetic field resulting in the field dependence of ηin. This
effect is even bigger for smaller values of bD, i.e. when the
relaxation time of the magnetization is longer. This is the
magnetic field dominated regime.

At very high shear rate the hydrodynamic regime is
reached. Here, the influence of the magnetic field on the slope
η diminishes and finally, for γ̇ →∞, the flow curves converge
to the same line, −σtot

xz = ν2γ̇.
In the transition region the stress obtains its (dynamic)

yield stress value, −σ0
xz, which is the stress needed to sustain

flow.
There is some arbitrariness in the definition of the yield

stress. Usually it is read off from stress-strain relations like
in Fig. 7 by extrapolating the high strain rate curves to zero
strain rate. Or one could use as the yield stress the peak of the
shear stress, or the shoulder, where the initial linear behavior
turns into the final one. We determine this transition point
as the shear rate at which the total shear stress, with the
viscous contribution ∼ ν2 subtracted, i.e. −σtot

xz −ν2γ̇, attains
a maximum. The dynamic yield stress is shown in Fig. 8 to
be a quadratic function of the external field, −σ0

xz = Ξ(µ0H)2

with Ξ ≈ 150 A2 Pa−1 m−2
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FIG. 8. The yield shear stress −σ0
xz as a function of the

magnetic field.

We have used the same set of parameters as in the pre-
vious section, discussing the static deformations. It should
be noted that a higher value of the yield stress may be ob-
tained by using for example, lower values of α, which as a
consequence increases the magnetic susceptibility. This stress
also increases with increasing bD, while the dependence of the
yield stress on τ2 increases for low values and then starts to
decrease for larger values of τ2.

Beyond the initial steep rise, the shear stress is often de-
scribed approximately by a Bingham model

− σxz = −σ0
xz + η∞γ̇ (51)

where a Newtonian viscous contribution is combined with the
yield stress −σ0

xz. Real MR fluids generally deviate from
the Bingham model in particular for higher magnetic fields.
Somewhat better fits to the experimental data can be achieved
by using the so called Casson or Herschel-Bulkley models55,
which are frequently more suitable for flow curves that are
not linear. In Fig. 9 it is shown, for the highest field case,
that the apparent viscosity in our description is lower than
in the Bingham model, demonstrating shear thinning. This
effect is smaller for intermediate fields and almost invisible
for low fields. This is in accordance with experimental find-
ings, where the Mason number 40,56, is often found to be
slightly lower than 1, indicating shear thinning.57–63 We men-
tion that a model that takes into account the anisotropy to-
gether with the additional dynamic interplay of the relative
rotations between the magnetization and the elastic network
may produce a stress-strain curve that is closer to the Bing-
ham model, Eq. (51). Another possibility is to consider the
2-fluid description of the magnetizable particulate phase and
the solvent, but this is beyond the scope of the current work.

B. Oscillatory shear flow

In this section we study the viscoelastic properties of MR
fluids in the linear response regime. We impose an oscillatory
deformation along the x axis, v(z) = γ̇e−iωtz êx + c.c., with
ω the frequency of the oscillation and where c.c. denotes the
complex conjugate. A measure of the viscoelastic properties
is the complex shear modulus G = G′ + iG′′, defined as the
ratio of the shear stress σtot

xz , Eq. (47), and the imposed strain
−γ ≡ γ̇/iω, G = σtot

xz /γ. The real, G′, and the imaginary

μ0H = 0.1 T
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μ0� = 0.3 T
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0
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FIG. 9. The apparent viscosity η, scaled by η∞, as a func-
tion of the shear rate for three different values of the applied
magnetic field. Bingham behavior is shown as dash-dotted
line for the high field case. The shear thinning of the ap-
parent viscosity at intermediate shear rates compared to the
Bingham model is obvious. For γ̇ →∞ all curves converge at
η/η∞ → 1.

part, G′′, are the storage and the loss modulus, describing
the reactive and dissipative response, respectively. We note
that γ is not identical to the Γ of Sec. III, as can be seen from
Eq. (46).

To calculate the complex shear modulus we linearize
Eqs. (44)-(46) around equilibrium, where the strain field
εij is zero and the magnetization points along the z axis,
M = M0êz, with M0 = µ0H/α for low magnetic fields. For
the relevant variables, Mx, Mz and εxz we use the ansatz

Mx = M
(0)
x e−iωt + c.c., Mz = M0 + (M

(0)
z e−iωt + c.c.) and

εxz = ε
(0)
xz e
−iωt + c.c., with M

(0)
x , M

(0)
z and ε

(0)
xz the corre-

sponding amplitudes, which are in general complex quanti-
ties. The frequency is assumed to be sufficiently small so that
the linear velocity profile is established at any time.

The characteristic time scales are τel = τ2/(4c2), corre-
sponding to the relaxing strain and τm = 1/(bDα), corre-
sponding to the magnetization relaxation. For the parameter
values used in this section, the time scales are almost equal,
τel . τm.

Experimental results63–65 show that the storage modulus
is considerably larger than the loss modulus at intermedi-
ate frequencies and that both increase with increasing mag-
netic field, which we could qualitatively reproduce, see Fig. 10.
This means that the system behaves more like a solid than a
liquid, which is expected, since a small amplitude shear oscil-
lation can only slightly influence the strength of the columns.
For smaller frequencies, the numerical results show that the
system behaves, as expected, more like a liquid than a solid,
Fig. 10.

For low frequencies, the storage modulus increases quickly
with frequency and then saturates for larger frequencies.64,65

This can be seen in Fig. 10. The initial rise of the storage
modulus is quadratic in the frequency

G′ ≈
(α

4
(1 + 2cR2 )2 τ2m + c2τ

2
el

)
M2

0ω
2. (52)

while for larger frequencies the plateau value

G′∞ =
(α

4
(1 + 2cR2 )2 + c2

)
M2

0 . (53)
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FIG. 10. Storage modulus G′ a), and b) loss modulus G′′

as a function of the frequency at three different values of the
applied magnetic field.

is reached. The increase of the storage modulus at low fre-
quencies is not reported often, which is either because many
of the experiments have not gone quite to the low frequency
regime, or the characteristic frequency where one observes
such an effect, is not experimentally accessible for many set-
ups. In Ref. 64 a saturation of the storage modulus is ob-
served at a frequency of about 1 Hz.

The loss modulus on the other hand, has a slightly more
complicated behavior. Theoretical results show that the loss
modulus increases linearly for low frequencies

G′′ ≈ ηinω, (54)

where ηin is the initial slope of the steady shear stress,
Eq. (50). After a maximum it starts to decrease and at inter-
mediate frequencies it passes a minimum before it increases,
finally. The location of the maximum is at

ωmax ≈ 1/τel (55)

and is independent of the magnetic field.
The minimum of the loss modulus at intermediate frequen-

cies shifts to larger frequencies as one increases the magnetic
field, Fig. 10(b), which is detected in certain experiments.63,64

For ω2τ2m � 1 and ω2τ2el � 1 the minimum is at

ωmin ≈
M0√
ν2

√
4c22
τ2

+
1

4

(
1 + 2cR2

)2
bDα2, (56)

where the frequency of the minimum ωmin shifts linearly with
the field.

The final, asymptotic behavior of the loss modulus for ω →
∞ is described by the viscosity ν2

G′′ � ν2ω. (57)

The maximum of the loss modulus at small frequencies has
not been reported often, perhaps due to the experimental lim-
itations at lower frequencies. There are certain indications,
that such a maximum exists.65
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FIG. 11. The master curves g′ and g′′ as a function of the
frequency ω corresponding to the storage G′ and the loss mod-
ulus G′′, respectively.

We found that a simple relation exists for the master curves
g′ and g′′ of G′ and G′′, respectively. The storage modulus
has to be rescaled by a factor of µ0H

2, g′(ω) = G′(ω)/µ0H
2,

while the viscosity term needs to be subtracted first in the loss
modulus, g′′(ω) = (G′′(ω)−ν2ω)/µ0H

2. The storage and the
loss moduli can be at any given magnetic field H reduced ex-
actly to the curves g′(ω) and g′′(ω), which is not surprising
because all contributions in the stress tensor, Eq. (47), apart
from the viscosity term ∼ ν2, are proportional to the square
of the magnetic field. Since the characteristic time scales, τm
and τel are independent of magnetic field, the master curves
are obtained without the need to rescale the frequency vari-
able, Fig. 11.

μ0H = 0.1 T

μ0� = 0.2 T

μ0� = 0.3 T

0 100 200 300 400
0

100

200

300

400

ω [s- 1]

| G

�

[P
a

�

FIG. 12. |G| as a function of the frequency at three different
values of the applied magnetic field.

We now discuss the dependence of the absolute value of
the complex shear modulus |G| =

√
(G′)2 + (G′′)2 on the

frequency. After the initial linear increase, governed by the
loss modulus, Eq. (54), there is a plateau at intermediate
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frequencies, which is basically given by the plateau of the
storage modulus G′∞, Eq. (53), since the loss modulus G′′ is
much smaller there. For high frequencies the loss modulus is
dominating again, and |G| increases according to Eq. (57).
This final increase is best visible in Fig. 12 for low fields.

This scenario applies to the case of (almost) equal elastic
and magnetic time scales. If these time scales are sufficiently
well separated, a somewhat different behavior of |G| is found,
Fig. 13. After the very steep initial rise a very narrow plateau
is found at rather low frequencies, which is approximately of
height c2M

2
0 (for τel � τm) and 1

4
(1 + 2cR2 )2αM2

0 (for τel �
τm). At intermediate frequencies |G| gently increases to the
combined plateau G′∞, Eq. (53), and finally converges to the
asymptotic behaviour independent of the relaxation times.

τel ≫ τm

τel ~ τ�

τel ≪ τ�
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FIG. 13. Shear modulus |G| as a function of the frequency in
a semi-log plot at µ0H = 0.5 T for three different (arbitrary)
choices of the time scales τel and τm. The light black dashed
horizontal lines denote the values of the plateaus for the dif-
ferent cases. To enhance the visibility of the lowest plateau,
cR2 = 4 has been chosen in this plot.

In polymer dynamics the empirical Cox-Merz rule is often
very well fulfilled. It allows to estimate shear stresses when
a steady shear is imposed from data obtained by small am-
plitude oscillatory strain rate experiments. This rule states
that at a given frequency ω, the modulus |G| is identical to
the shear stress, −σtot

xz under a steady shear rate γ̇ = ω. It
is trivially fulfilled for γ̇ → ∞ and ω → ∞, where |G| � ν2ω
and −σtot

xz � ν2γ̇. Similarly, for very small ω, |G| ≈ G′′ ∼ ω,
Eq.(54), increases the same way as −σtot

xz ∼ γ̇. Applying the
Cox-Merz rule to the yield shear stress, however, would lead
to

− σ0
xz =

( (1 + 2cR2 )2

4
+
c2
α

)
αM2

0 ≈ 2800 (µ0H)2 (58)

for the stationary yield stress, which is, though, much larger
than the value of 150 (µ0H)2 found in Sec. IV A, Fig. 9. This
shows that the Cox-Merz rule is not obeyed in MR fluids.
This difference is probably due to the columnar structures,
which are not destroyed in the small amplitude oscillatory
shear, but are destroyed in steady shear. Eqs. (56) and (58)
can be used to determine the dynamic coefficients cR2 , bD and
τ2, or serve as an additional method to determine the static
parameter c2.

V. SUMMARY AND PERSPECTIVE

In the present study a simple macroscopic model for the
MR fluids has been proposed. We tested the model on sev-
eral simple experimental configurations, such as the influence
of a magnetic field or a normal pressure on the static shear
deformations as well as simple shear flow in the steady and
the oscillatory regime.

In order to model the effects of the chains of magnetizable
particles, which are observed in experiments, and to capture
the solid like properties, we included as the macroscopic vari-
ables the magnetization and the strain field. We have shown
that the inclusion of these variables nicely explains certain ex-
perimental facts, such as the existence of a static yield stress
or the influence of a normal pressure on the static yield stress.
We have successfully reproduced the quadratic field depen-
dence of the static yield stress with the appropriate critical
strain being independent of the magnetic field. This was made
possible by a (quadratic) dependence of the elastic moduli on
the magnetization, which is motivated by the fact that the
solid-like properties of MR fluids are due to the magnetic
field.

Furthermore, we probed the dynamics of our model by in-
vestigating the stresses that arise by applying a shear flow.
Here, our assumption that the strain relaxation coefficients
are proportional to the magnetization squared comes into
play, which is motivated by the fact that the elastic network
relaxes on longer time scales in larger magnetic fields. First,
we applied a stationary shear flow, leading to the flow curves
describing the shear stress as a function of the shear rate.
For intermediate values of the shear rate a maximum, the
dynamic yield stress, was obtained and the flow curve could
almost be described by the Bingham law. However, devia-
tions were found indicating shear thinning, in particular for
higher magnetic fields.

We also studied the effects of an imposed oscillatory shear
flow. We showed that the complex shear modulus as a func-
tion of the frequency exhibits a plateau. The values of the
plateau are related to the elastic shear modulus or to the
hydrodynamic coupling between magnetization and flow, or
to both, depending on whether the elastic relaxation time is
much larger, or much smaller, or almost equal to the magnetic
relaxation time, respectively. Applying the Cox-Merz rule,
which compares the plateau regime with the dynamic yield
stress of the stationary case, revealed that the Cox-Merz rule
is not fulfilled by our model.

We derive equations and present expressions that can be
used for measuring certain phenomenological coefficients. Ex-
amples are the elastic and magnetostriction coefficients, which
could be determined from measurements of the stress-strain
curves and the maximum tilt angles of the chains. We also
discuss the possibilities to determine the dynamic coefficients,
by measuring for example; the initial slope of the stress as a
function of the shear rate, the shift of the minimum in the
loss modulus G′′ as a function of the magnetic field, or by
measuring the plateau values of the shear modulus |G|. We
have also shown that a simple master curve may be generated
for the storage and the loss modulus.

In a next step it is desirable to capture various aspects
of pattern formation in MR fluids. Examples of these pat-
terns include the formation of the columns themselves, the
thickening of the columns under a pressure force66, the stripe
formation under shear flow67–69 or structures formed in a ro-
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tating magnetic field.70 A macroscopic 2-fluid model has been
presented in Ref. 71, but has never been applied to magnetic
systems such as MR fluids. In this case one would model the
MR fluid with the solvent phase and the particle phase as two
separate fluid phases.

As a perspective we mention the generalizations to large
magnetic fields for which the approximation used in the
present no longer applies. In addition, also the role of rel-
ative rotations between the magnetization, Mi and the elas-
tic matrix should be investigated. Relative rotations could
also contribute to the tilting of the chains, complementing
the magnetostrictive effects discussed in Sec. III A.
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