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Chaotic dynamics of a magnetic nanoparticle
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We study the deterministic spin dynamics of an anisotropic magnetic particle in the presence of a magnetic
field with a constant longitudinal and a time-dependent transverse component using the Landau-Lifshitz-Gilbert
equation. We characterize the dynamical behavior of the system through calculation of the Lyapunov exponents,
Poincaré sections, bifurcation diagrams and Fourier power spectra. In particular, we explore the positivity of
the largest Lyapunov exponent as a function of the magnitude and frequency of the applied magnetic field and
its direction with respect to the main anisotropy axis of the magnetic particle. We find that the system presents
multiple transitions between regular and chaotic behaviors. We show that the dynamical phases display a very
complicated structure of intricately intermingled chaotic and regular phases.

PACS numbers: 05.45.Pq, 75.10.Hk, 75.40.Mg

The world of nanometric scale is becoming increasingly ac-
cessible due to the remarkable development of experimental
techniques. The technological applications of nanostructures
can be found in many different areas, such as biomedicine or
high-precision instrumentation. In material science, one sig-
nificant application of magnetic particles and clusters is in the
area of recording media [1]; and so the magnetization reversal
is one of the fundamental features of data storage. Therefore,
a detailed study of a simple magnetic systems is really impor-
tant and will be presented here.

Nonlinear time-dependent problems in magnetism have al-
ready been studied in numerous cases, where the standard ap-
proaches to modeling the classical magnetic dynamics use the
Landau-Lifshitz or Landau-Lifshitz-Gilbert (LLG) equation;
recent accounts of developments can be found in Refs. [2, 3].
These models have been used in both, discrete [3-7] and
continuous magnetic systems [3, 8, 9]. Several experiments
showing chaotic behavior in magnetic systems have been re-
ported [10-13]. Typical magnetic samples are yttrium iron
garnet spheres [10]. It is worth mentioning that using ferro-
magnetic resonance technique, different routes to chaos have
been found such as period-doubling cascades, quasiperiodic
dynamics and intermittent dynamics. Hence, a theoretical de-
scription including phase diagrams of the chaotic regions is
needed and can motivate further experiments in this area.

Here we report the computation of complete phase dia-
grams for a chaotic nanoparticle governed by the LLG equa-
tion. Complete phase diagrams, namely diagrams recording
all physically stable phases, both periodic and chaotic, are
relatively hard to obtain because they imply computationally
intensive calculations, particularly for models described by
flows, i.e. by continuous systems of ordinary differential equa-
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tions. Recent work describing these methods and difficulties
can be found in Ref. [14]. The aim of this paper is to analyze
the influence of a time-dependent external magnetic field on
an anisotropic magnetic nanoparticle. In particular we study
a periodic driving in the direction perpendicular to the main
anisotropy direction (the easy axis) and a constant driving par-
allel to the easy axis.

Let us consider a magnetic particle and assume that it can
be represented by a magnetic monodomain of magnetization
M, being governed by the dimensionless LLG equation

ﬁd—m:fmxl"fnmx(mxl"), (1)

dr

where m = M/M,, 7 = t|y|M, and k = 1+ n? [3, 4]. Here
M is the saturation magnetization that leads to jm| = 1 and y
is the gyromagnetic factor, which is associated with the elec-
tron spin and whose numerical value is approximately given
by |7] = [7vel o ~ 2.21x10° m A= s71. In order to get
a better physical insight into the problem, let us evaluate the
scales introduced here. Typical values are, e.g. for cobalt ma-
terials, M ~ 1.42x10% A/m, hence the time scale (t = 1)
is in the picosecond range, t; = 1/|y|M; =~ 3.2 ps. The
present technology is able to follow experiments at the fem-
tosecond scale. Indeed, Beaurepaire ef al. [15] observed the
spin dynamics at a time-scale below the picosecond scale in
nickel [15]. More recently one has observed phenomena at a
timescale less than 100 fs [18, 19]. In Eq. (1), n denotes the
dimensionless phenomenological damping coefficient that is
characteristic of the material and whose typical value is of the
order of 10~*—1073 in garnets and 10~2 or larger in cobalt or
permalloy [3]. In Eq.(1), the effective magnetic field, denoted
by I, is given by I' = h + § (m - n)n, where h = H/M;
is the external magnetic field and 5 measures the anisotropy
along the n axis. This special type of anisotropy is called uni-
axial anisotropy and the constant 8 can be positive or negative
depending on the specific substance and sample shape [16]



in use. We apply an external magnetic field h that comprises
both, a constant longitudinal and a periodic transverse part
with fixed amplitude and frequency h = hg + hy sin (Q7),
where hy (||z), hr (L2z) and 2 are time independent. We as-
sume that the particle is fixed with the anisotropy axis along
the constant field, n || 2. We remark that |m| is conserved
and Eq. (1) describes pure rotations of the magnetization in
three-dimensional space. Many numerical schemes have been
used to resolve the LLG equation [3] and to avoid numerical
artifacts; it is suitable to solve Eq. (1) in the Cartesian repre-
sentation [4].

For zero damping and without parametric forcing Eq. (1) is
conservative. The dissipation and the oscillatory injection of
energy drives the magnetic particle in an out-of-equilibrium
situation. In such a circumstance the magnetization of the
particle may exhibit complex dynamical behavior, e.g., quasi-
periodicity, and chaos [4]. In Ref. [4] the existence of chaos
as a function of |hr| was discussed. In the following we pro-
vide a more exhaustive characterization of the chaotic regime
including its dependence on the longitudinal field |hg| and the
frequency €2, which will reveal a rather complicated topology
in parameter space.

First, we characterize the dynamics of Eq. (1) by evaluating
the Lyapunov exponents (LE). This method consists in quan-
tifying the divergence between two initially close trajectories
of a vector field. In general for a N-dimensional dynamical
system described by a set of equations, dX'/dr = F'(X,7),
the LE are defined by

Rl
A; = lim =1 1y 2
s “(\|5X5|\) 2)

where )\; is the i-th Lyapunov exponent and ||6X z- || is the dis-
tance between the trajectories of the i-th component of the
vector field at time (. Let us recall that the measure of the ex-
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FIG. 1: (Color online) Phase diagram displaying the largest Lya-
punov exponent color coded as a function of the field amplitudes h,
and hy for @ =1, h, = 0.1, 8 = 1, and = 0.05. The structure of
the phase diagram is invariant with respect to the orientation of Hy.
The resolution is Ah; = Ahy = 2x 1073, namely 1500 x 1500
discretization points.

ponential divergence in the phase space is given by the LEs,
and that one has as many LEs as one has dimensions of the
phase space of the dynamical system [17].

Since our prototypical model conserves the modulus of
the magnetization |m| and the applied magnetic field is time
dependent, the effective dimension of the phase space is 3.
Therefore, one could compute three LEs associated with the
dynamics of Eq.(1). However, in terms of a dynamical sys-
tem, only the largest LE (LLE) may become positive for a
dissipative system of dimension 3. Here, we explore the de-
pendence of the LLE the on the different control parameters
of the system. One can, e.g., draw two-dimensional maps il-
lustrating the magnitude of the LLE as a function of two pa-
rameters. This permits us to determine the parameter ranges
that lead to chaotic dynamics, i.e., the LLE that is positive,
and those showing regular (quasiperiodic, periodic, or fixed
point) dynamics, i.e., LLE that is zero or negative. In addi-
tion, following a technique explained in Ref. [14], we use an
iterative zoom resolution process to investigate further the de-
pendence of the dynamics upon very small variations of the
system parameters.

In contrast, there are other methods of quantifying the
non-periodic behavior of a dynamical system, such as the
Fourier spectrum, Poincaré sections, and correlation func-
tions [3, 7, 17]. Bifurcation diagrams using Poincaré sec-
tions of the dynamics of the magnetization angles, given by
m = (cos ¢sinf,sin ¢sin b, cos ), were employed in Ref.
[4]. In these diagrams, when there is a continuum of points,
the behavior is quasiperiodic or chaotic.

We have integrated Eq. (1) in the Cartesian representa-
tion by using a standard fourth-order Runge-Kutta integration
scheme with a fixed time step dr = 0.01 that ensures a pre-
cision of 108 on the magnetization field. The LEs are cal-
culated for a time span of 7 = 32768 after an initial transient
time of 7 = 1024 has been discarded. The Gram-Schmidt or-
thogonalization process is performed after every 7 = 1. The
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FIG. 2: (Color online) Phase diagram displaying the largest Lya-
punov exponent color coded as a function of the field amplitude h,
and the frequency Q2 for hy = 0, h, = 0.1, 8 = 1, and = 0.05.
The resolution is AQ = 2x 107 and Ah, = 3x 1072,
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FIG. 3: (Color online) (a) Phase diagram showing a global view of the h, X h. space, computed for 2 = 0.5, hy = 1, 5 =1, and n = 0.05.
(b) Magnification of the black box in (a). (c) Magnification of the black box in (b). The parameter resolutions of these panels are: (a)
Ahy =3x107% and Ah, = 2x1073, (b) Ahy = Ah, = 4x107%, and (¢c) Ahy = Ah, = 4x107°.
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FIG. 4: (a) Bifurcation diagrams of 6 and ¢ and LLE () as a function
of hy. The fixed parameters are 2 = 0.5, hy, = 1, 8 = 1,7 = 0.05
and h, = 1. Poincaré sections of ¢ and € and the corresponding
Fourier power spectra of m, are shown for(b) and (c) h, = 3.35
and (d) and (e) h, = 3.40 . The amplitudes of the power spectra are
expressed in arbitrary units.

error F in the evaluation of the LEs has been checked by us-
ing F = o (Ay) /max (Ay), where o(Ayy) is the standard
deviation of the maximum positive LE. In all cases studied
here E is of the order of 1%, which is sufficiently small for
the purpose of the present analysis. Due to the large number of
parameters involved in the system, we set 3 = 1 and n = 0.05
for the rest of the paper.

Figure 1 shows a color-coded LLE phase diagram as a func-
tion of the oscillatory field amplitudes h, and h,. The chaotic
regions appear in a circular symmetric fashion, indicating an
invariance of the LEs with respect to the orientation of the pe-
riodic transverse field hp. For a general initial orientation of
the magnetization, the full dynamical problem is not rotational
invariant. However, since the occurrence of chaos is indepen-
dent of initial conditions, and since there is only a single basin
of attraction for the dynamics, the orientation of h in the per-
pendicular plane is irrelevant for the position of the regions
with a positive LE. We observe that no chaos is found for
small amplitudes of the oscillatory transverse field and that by
increasing the field amplitudes, regions with chaos and those
with regular dynamics alternate. In fact, the chaotic regions
appear at almost constant intervals of hp = (h2 + h2)'/2.

Figure 2 shows the color-coded LLE as a function of the
amplitude h, and the frequency 2 of the time-dependent field,
at a small fixed value of the constant field h,. For a given
driving frequency, chaos occurs only above a certain field
strength. Chaos appears first for a finite frequency, which cor-
responds roughly to the characteristic time scale of the mag-
netization dynamics. For smaller (and larger) frequencies the
field has to be larger to experience chaos. Very small frequen-
cies (2 < 0.1) and large frequencies (2 = 1.3) hindered
the appearance of chaos. Apparently, in both cases the time
dependence of the driving force is instrumental for magneti-
zation chaos because either the magnetization can follow it or
it is averaged out. Interestingly, one can observe that inside
the main chaotic areas there are still windows without chaos.
For small fields and small frequencies the antagonistic nature
of these two quantities for the appearance of chaos becomes
clear, since chaos is only possible above a line 2+ h,, = const.

In Fig. 3 we investigate the dependence of chaos on the two



amplitudes h, and h, of the periodic transverse and constant
longitudinal field, respectively. The ratio of these two ampli-
tudes determines the angle of the periodic driving field with
respect to the anisotropy axis. In Fig. 3(a) the global view
for a rather large range of field values is displayed, while
Figs. 3(b) and (c) show enlarged perspectives giving a more
detailed picture. There is no chaos for a high constant field
h., where its stabilizing effect dominates. For lower values of
h., one observes again an alternation of chaotic and regular
regions as one increases the h, values. These alternating re-
gions are reminiscent of the Arnold tongues that are observed
in synchronization theory [20]. They look very similar to the
reverberations present in damped-driven Duffing oscillators
[21]. Note that the chaotic regions are not compact, but con-
tain areas of regular dynamics for special values of the field
amplitudes. The better resolution of Fig. 3(b), the zoomed-in
view of the white square seen in Fig. 3(a), reveals an inter-
esting pattern in the form of a regular self-similar succession
of chaotic and regular regions. Finally, by the next zooming
step in the lowest frame [see Fig. 3(c)], one recognizes that
the boundaries separating the chaotic and regular regions may
be very complicated as they mix continuum branches with dif-
fuse punctual separations.

Finally, in order to investigate in more detail different types
of transition between regular to chaotic behavior we analyze
a horizontal cut of Fig. 3(b) in the range 3.1 < h, < 3.6 at
h, = 1. The bifurcation diagrams of 6 and ¢ as a function
of h, are presented in Fig. 4(a). We observe that the system
starts in a periodic state and makes an abrupt transition to a
chaotic behavior. Above that, alternating regular and chaotic
behaviors are found while increasing the parameter h,. The

middle and the lower parts of Fig. 4 show the Poincaré sec-
tions of ¢ and 6, and the corresponding Fourier power spectra
of m, for two values of h,, one in the chaotic [Fig.4b] and the
other in the regular regime [Fig.4d], respectively. Figure 4(d)
shows a Poincaré section consisting of seven isolated points,
which describes a period-7 behavior.

In conclusion we have determined the regions of parame-
ters that lead to either chaotic or regular regimes using the
Lyapunov exponent method. The azimuthal orientation of the
transverse oscillating field is irrelevant here, however, the field
strength, the angle of the applied field with respect to the easy
axis and the frequency of the forcing are crucial parameters for
the appearance of chaos. For low frequencies, and frequen-
cies somewhat above the gyromagnetic resonance, no chaos is
found, nor is it for weak transverse fields well below the sat-
uration field strength. The static transverse field is stabilizing
and suppresses chaos for higher field strengths. The parameter
regions, where chaos does occur, are generally not compact,
but consist of regular areas in an almost streaky fashion. Fi-
nally, we mention that the complex structures of the several
phase diagrams reported here are large enough to be experi-
mentally accessible with present day technology and provide
a means of testing the reliability of the underlying theoretical
description.
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