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Abstract

We report theoretical and numerical results on thermally driven convection of a magnetic suspension.
The magnetic properties can be modeled as those of electrically non-conducting superparamagnets.
We perform a truncated Galerkin expansion finding that the system can be described by a generalized
Lorenz model. We characterize the dynamical system using different criteria such as Fourier power
spectrum, bifurcation diagrams, and Lyapunov exponents. We find that the system exhibits multiple
transitions between regular and chaotic behaviors in the parameter space. Transient chaotic behavior
in time can be found slightly below their linear instability threshold of the stationary state.
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1. Introduction

Chaotic behavior in thermal convection
started with the work of Lorenz in the sixties [1].
The author found chaos in the simplest Rayleigh-
Benard convection using a prototype model to
forecast the weather. The experimental obser-
vation of the chaotic behavior in this system
was made by Libchaber and coworkers [2]. Other
works in the chaotic convection are in simple flu-
ids [4, 5], in binary fluids [3, 6, 7], in viscoelastic
fluids [8–11], in porous media [12–14], in magne-
tohydrodynamics [15], in magnetic fluids [16] or in
dielectrics [17], just to mention a few examples.

Ferrofluids are colloidal suspensions of mag-
netic nanoparticles dispersed in a carrier liquid.
Typically, the particles’ diameter is of a few tenths
of nanometers leading to gravitationally stable
systems. Ferrofluids are superparamagnetic show-
ing a strong response to external magnetic fields
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[18, 19]. Convection in ferrofluids for different sit-
uations has been reported both theoretically [20–
45] and experimentally [46–57].

The purpose of the present paper is to analyze
the chaotic convective behavior of an electrically
nonconducting ferrofluid, in contrast to magne-
tohydrodynamic systems, where chaotic motion
is accompanied by appropriate electric currents.
Using a truncated Galerkin expansion, similar to
the Lorenz assumption [1], we derive a set of three
nonlinear differential equations for the amplitudes
of flow, temperature and magnetic potential. We
characterize the dynamical behavior of the sys-
tem through the calculation of Lyapunov expo-
nents, bifurcation diagrams, and Fourier power
spectra. Here we report the computation of com-
plete phase diagrams for this generalized Lorenz
system that include all physically stable phases,
both periodic and chaotic. Generally, this is diffi-
cult to obtain, because computationally intensive
calculations are needed, particularly for models
set up as a system of continuous ordinary dif-
ferential equations. Recent work describing such
methods and difficulties can be found in Ref. [58].
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The paper is organized as follows: In Section
2, the basic hydrodynamic equations for magnetic
fluid convection are presented. In Section 3 the
generalized Lorenz equations are derived. In Sec-
tion 4 the stability analysis of the stationary solu-
tions is calculated. In Section 5 and 6 the numer-
ical simulations are performed and the results are
explained. Finally, a summary is given in Section
7.

2. Basic equations

We consider a layer of thickness d, parallel to
the xy-plane, with very large horizontal extension,
of a ferrofluid subject to a vertical temperature
gradient and gravitational field g = −gẑ. The
magnetic fluid properties are modeled as those
of an electrically nonconducting superparamag-
net. An external vertical magnetic field H = H0ẑ
is assumed to be present. The static tempera-
ture difference across the layer is imposed by
fixing the temperatures at the layer boundaries,
T (z = 0) = T0 +4T and T (z = d) = T0. Within
the Boussinesq approximation, the dimensionless
equations for the perturbations from the quies-
cent, heat conducting state, can be written as [45]

∇ · v = 0, (1)

P−1dtv =−∇peff +∇2v +RaΣ(θ, φ), (2)

dtθ = ∇2θ + vz, (3)

(∂zz +M3(∂xx + ∂yy))φ− ∂zθ = 0, (4)

∇2φext = 0, (5)

where {v, θ, φ} are the dimensionless perturba-
tions of the velocity, the temperature, and the
magnetic potential, respectively. Here dtf = ∂tf+
v · ∇f is the material derivative, peff is the effec-
tive pressure which contains the static hydrody-
namic pressure and the gradient term of the mag-
netic force, and Σ = Π1(θ, φ)ẑ + M1(∇θ)(∂zφ)
with Π1 = (1 +M1)θ −M1∂zφ.

We have kept four dimensionless numbers in
(1)-(5): The Rayleigh number, Ra = αTgβd

4/κν,
accounting for buoyancy effects, the Prandtl num-
ber, P = ν/κ, relating viscous and thermal diffu-
sion time scales, M1 = βχ2

TH
2
0/(ρ0gαT (1+χ)) de-

scribing the strength of the magnetic force relative

to buoyancy, and M3 = (1 + χ)/(1 + χ+ χHH
2
0 ),

a measure for the deviation of the magnetiza-
tion curve from the linear behavior M0 = χH0.
In these dimensionless numbers different physical
quantities appear such as ρ0 the reference mass
density, cH the specific heat capacity at constant
volume and magnetic field, χT the pyromagnetic
coefficient, κ the thermal diffusivity, χH the lon-
gitudinal magnetic susceptibility, αT the thermal
expansion coefficients, αH the magnetic expansion
coefficients, ν the static viscosity, and β = 4T/d
the applied temperature gradient.

The Rayleigh number Ra is the main control
parameter and can be varied by several orders of
magnitude, relevant values in the present case are
Ra ∼ 102− 103. Typical value for P in ferrofluids
are P ∼ 100 − 103 with P ∼ 10 for aqueous sys-
tems. The magnetic numbers are field dependent
with M1 ∼ 10−4−102 and M3 & 1 for typical mag-
netic field strengths [27]. Note that M1 is directly
proportional to H2

0 , while M3 is only a weak func-
tion of the external magnetic field. Other mag-
netic numbers have been suppressed, since their
values are of the order 10−5 in ferrofluids, with
negligible effects on the balance equations [27].

3. Generalized Lorenz equations

In this section we derive a set of ordinary
differential equations using a truncated Galerkin
method in the same spirit as Lorenz [1]. For the
sake of simplicity, the analysis is limited to two-
dimensional flows. In particular, we assume a two-
dimensional pattern, which is laterally in the x-
direction infinite and periodic with wave number
k, describing parallel convection rolls along the
y-axis. In this case, we express the velocity field
in terms of the stream function, ψ, defined by
v = {−∂zψ, 0, ∂xψ}. Therefore, the set of equa-
tions can be written as

P−1dt∇2
+ψ = Ra([1 +M1]∂xθ −M1∂xzφ)

+ RaM1 ([∂xθ][∂zzφ]− [∂zθ][∂xzφ])

+ ∇4
+ψ, (6)

dtθ = ∂xψ +∇2
+θ, (7)

0 = (∂zz +M3∂xx)φ− ∂zθ, (8)
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where dtf = ∂tf +[∂xψ][∂zf ]− [∂zψ][∂xf ], ∇2
+f =

∂xxf+∂zzf and ∇4
+f = ∂xxxxf+2∂xxzzf+∂zzzzf .

We impose idealized boundary conditions at z =
(0, 1) for the temperature, the scalar magnetic po-
tential and the stream function, respectively

θ = ψ = ∂2zψ = ∂zφ = 0. (9)

For the numerical simulations in the lateral di-
rection we will restrict ourselves to the funda-
mental mode, neglecting higher harmonics in the
x-direction. This assumption can be made since
we consider a large container. In the z-direction
across the layer a multimode description will be
used where necessary. Higher harmonics describe
deviations of the variables from the linear regime.
According to the boundary conditions we can ex-
pand the functions in the following way [1]

k ψ(t, z, x) = −a1(t) sin(πz) sin(kx), (10)

θ(t, z, x) = a2(t) sin(πz) cos(kx) + a3(t) sin(2πz),
(11)

φ(t, z, x) = a4(t) cos(πz) cos(kx) + a5(t) cos(2πz).
(12)

Note that similar to the Lorenz model we consider
the effect of second harmonics only in the temper-
ature (and consequently in the scalar magnetic
potential). The second harmonic of the stream
function has been neglected under the assumption
of small convective motions [1]. This term could
be important for the study of large-scale convec-
tion.

Substituting these trial functions into Eqs.
(6)-(8), multiplying the equations by the corre-
sponding orthogonal eigenfunctions, and integrat-
ing in space over the wavelength of a convection

cell,
∫ π
k

−π
k

∫ 1

0
dx dz, yields a set of ordinary differ-

ential equations for the time evolution of the am-
plitudes

1

P
ȧ1(t) = −q2a1(t)− q4ra2(t)[1−M13a3(t)],

(13)
ȧ2(t) = −q2a2(t)− a1(t)− πa1(t)a3(t), (14)

ȧ3(t) = −4π2a3(t) +
π

2
a1(t)a2(t), (15)

where q2 = π2 + k2, r = Ra/Ras, and M13 =
πk2M1M3/(π

2 + k2[1 + M1]M3). Here Ras is the

stationary Rayleigh number obtained from linear
stability analysis [20]

Ras =
q6(k2M3 + π2)

k2 (k2[1 +M1]M3 + π2)
.

We remark that the equation for the scalar mag-
netic potential is independent of time and the
magnetic amplitudes are slaved and determined
by a4(t) = −πa2(t)/(k2M3 + π2) and a5(t) =
−a3(t)/(2π). Note that this set of three differ-
ential equations can be viewed as a generalized
Lorenz system for ferrofluid convection. The mag-
netic effects in Eq. (13) appear in the nonlinear
term proportional to a2a3. Note that similar sys-
tems were presented in Ref. [16] and in Ref. [17]
for magneto- and electro-convection, respectively.
In the following section Eqs. (13) - (15) are ana-
lyzed in detail.

Apart from the two dimensional roll pattern
considered here, the system could exhibit three di-
mensional patterns like square or hexagonal ones.
To compare their stability range with the roll pat-
terns requires a complete three dimensional anal-
ysis, which is well beyond the scope of the present
work.

4. Stability analysis

For the analysis of our generalized Lorenz sys-
tem it is convenient to use an equivalent normal-
ization defining a new time scale τ = q2t and
new variables A(τ) = πa1(τ)/(q2

√
2), B(τ) =

−πra2(τ)/
√

2 and C(τ) = −πra3(τ). Hence, Eqs.
(13) - (15) read as

A′(τ) = P (B(τ)− A(τ)) +Q13B(τ)C(τ), (16)

B′(τ) = rA(τ)−B(τ)− A(τ)C(τ), (17)

C ′(τ) = A(τ)B(τ)− 4π2

q2
C(τ), (18)

where f ′ = df/dτ and Q13 = PM13/(πr). Note
that when M1 → 0 or M3 → 0 (Q1,3 → 0)
and q2 → q2RB = 3π2/2, the Lorenz system is
exactly recovered. We remark that the gener-
alized system still has the reflection symmetry
{A,B,C} → {−A,−B,C} of the original Lorenz
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Figure 1: The flow amplitudes A2 and A3 of the stationary
solutions as a function of the reduced Rayleigh number r.
Solid (blue) lines show the real parts, while dashed (red)
ones depict imaginary parts. Only A2 is real for r > 1 and
describes the stationary, homogeneous convection state.
The fixed parameters are k = π/

√
2, P = 10, M1 = 10,

and M3 = 1.1.

system [1], which implies that if {A,B} are so-
lutions so are {−A,−B}. The latter degeneracy
will not be shown explicitly in the following. We
will now analyze the stability of the fixed points
and perform full numerical simulations.

The system of Eqs. (16)-(18) has the general
form Y′ = F(Y) with Y = {A,B,C}. There
are five stationary solutions (two of which are
degenerate), which are calculated from Y′ = 0.
The first one is the trivial, motionless solution
Y1 = {0, 0, 0}, which exists for any value of the
control parameter r. Generally, there are other so-
lutions

A2,3 =

√
PηΨ±

(
±
√

Φ + P + rQ13

)
2
√

2PQ13

, (19)
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Figure 2: Critical reduced Rayleigh number rc, where the
stationary convection state becomes linearly unstable, as a
function of M1 ∼ H2

0 . The fixed parameters are k = π/
√

2,
P = 10, M3 = 1.1.

B2,3 =

√
PηΨ±√
2Q13

, (20)

C2,3 =
rQ13 − P ±

√
Φ

2Q13

, (21)

where η = 4π2/q2, Ψ± = ±
√

Φ−P −Q13(−2+r),
and Φ = P 2 + 2PQ13(−2 + r) +Q2

13r
2. These so-

lutions describe stationary convection, only when
they are real. Indeed, in the case r > 1 there is
Φ > 0 and Ψ± ≷ 0 meaning that one solution
Y2 = {A2, B2, C2} is real and describes a sta-
tionary convective state, while Y3 = {A3, B3, C3}
does not (since A3 and B3 are imaginary). For
r < 1 both solutions are complex, since Ψ± < 0,
and do not describe a physical realizable state.
In Fig. 1 the typical behavior of A2 and A3 is
shown as a function of r. The former state con-
verges to the trivial one at r = 1, equivalently to
the Lorenz system [1], while the latter is non-zero
and imaginary, due to a non-zero Q13. We note
that for r > 1 there are two real solutions, A2

and the trivial one, A1 = 0, whose stability we
will consider next.

To analyze the stability of each homogeneous
solution YH let us suppose that Y(τ) = YH +
δY(τ) where δY(τ) is a fluctuation such that
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Figure 3: (Color Online) Stream function amplitude, A(τ),
as a function of time τ for three different values of r in the
stationary regime for M1 = 1, M3 = 1.1, k = π/

√
2 and

P = 10. The purple (continuous), red (dashed), and blue
(dashed-dotted) curves are for r = 1, 3, 5, respectively.

|δY| � 1. The linearized equation around YH

is δY′ = J̄ · δY where J̄ is the Jacobian matrix

J̄ =

 −P P + CHQ13 BHQ13

r − CH −1 −AH
BH AH −η

 . (22)

The associated eigenvalue problem of J̄ produces
the secular equation (with δY′ = ζδY)

ζ3 + p2ζ
2 + p1ζ + p0 = 0, (23)

where
p2 = 1 + P + η (24)

p1 = η + P (1− r + η) + A2
H −B2

HQ13

+ C2
HQ13 + CH (P − rQ13) , (25)

p0 = P (η(1− r) + A2
H)−B2

HQ13

+ CH (Pη − rηQ13 + 2AHBHQ13)

+ AHBH (P − rQ13) + ηC2
HQ13. (26)

The stability of the stationary solution depends
on the sign of ζ and the transition from stability
to instability occurs when the real part of one or
more of the eigenvalues passes through a zero from
negative to positive.

In the case of Y1 the eigenvalues are ζ1 = −η
and 2ζ2,3 = −1 − P ±

√
(−1 + P )2 + 4rP . The

M3 = 1.5

M3 = 1.0
M3 = 0.5
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Figure 4: Saturation value of the stream function ampli-
tude A, |A|sat = |A(τ → ∞)|, as a function of M1 for
three different values of M3 for r = 1.1, k = π/

√
2 and

P = 10. The orange (dashed), red (continuous), and dark-
red (dashed-dotted) curves are for M3 = 0.5, 1.01, 5, re-
spectively.

first and third ones are always negative, while the
second one changes sign from negative to positive
at r = 1. Since the marginal instability condition
is ζ = 0, Y1 becomes linearly unstable at rc = 1,
independent of the magnetic field. In the case of
Y2 and Y3 the expressions are much more com-
plicated, which implies that analytical predictions
are not tractable, but one can calculate numeri-
cally the critical thresholds. Fig. 2 shows the crit-
ical reduced Rayleigh number, where the station-
ary convection state Y2 becomes linearly unsta-
ble. This secondary instability threshold decreases
with the magnetic field (M1 ∼ H2

0 ), hence the
magnetic field has a destabilizing effect. This re-
sult is in agreement with the linear stability anal-
ysis obtained by Finlayson [20]. How the loss of
stability of the stationary state is related to the
onset of chaos, will be shown below.

5. Numerical simulations

In order to study numerically the dynamical
behavior of our system we have integrated Eqs.
(16) - (18) via a classical explicit fourth order
Runge-Kutta integration scheme with a fixed time
step 4t = 0.01 guaranteeing a precision of 10−8

for the amplitudes. For each set of parameters we
let the numerical solution evolve for at least 106

time steps in order to exclude transient phenom-
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Figure 5: The upper frame shows the bifurcation diagram
of A as a function of r. In the lower one the maximum
Lyapunov exponent, λmax is plotted as a function of r.
The fixed parameters are k = π/

√
2, P = 10, M3 = 1.1

and M1 = 20.

ena. In the plots, where the time dependence of
a quantity is shown, we adjust the time window
to the relevant dynamical properties under con-
sideration. This system is a generalization of the
Lorenz system, hence we expect that the system
can exhibit complex behavior.

In the stationary convection state, after some
transient oscillations (Fig. 3), the stream func-
tion amplitude, A, takes its constant saturation
value |Asat| = |A(t→∞)|. The amplitudes of the
transient oscillations as well as the saturation am-
plitudes increase with the reduced Rayleigh num-
ber r (For r = 1 the final amplitude is zero, of
course). The saturation amplitudes are discussed
as a function of the magnetic parameters in Fig. 4.
Just above the threshold (r = 1.1) they increase
strongly with the magnetic field (M1) and only
slightly with the magnetization nonlinearity M3.
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Figure 6: The top frame shows the 3D phase portrait of
{A,B,C} in the chaotic regime at r = 15. The bottom
frame shows the corresponding Fourier power spectrum
of A and, as inset, the appropriate time series. The fixed
parameters are the same as in Fig. (5)

In order to investigate how the system changes
its dynamical behavior as a function of the control
parameter, in particular to find out what happens
close and above the (secondary) instability of the
stationary convection regime, we determine the
bifurcation diagram and calculate the largest Lya-
punov exponent (LE). The bifurcation diagram
(upper frame of Fig. 5) is obtained by taking re-
peatedly the maximum value of the stream func-
tion amplitude Amax in a given time interval; this
is done for a large range of different values of the
control parameter r. If there is always the same
Amax, then the system is periodic, while for finite
continuous distribution of different Amax values,
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Figure 7: Color coded temperature profiles and streamlines
as a function of the spatial coordinates x and z at three
different times in the chaotic regime at r = 15. Red / upper
half layer (blue / lower half layer) mean hotter (colder)
regions. The fixed parameters are k = π/

√
2, P = 10,

M3 = 1.1, and M1 = 20. The full time evolution is shown
in a movie [63].

the behavior is either quasi-periodic or chaotic.
To discriminate between the two latter possibili-
ties, LEs λi defined by

λi = lim
τ→∞

1

τ
ln
(‖δYi(τ)‖
‖δYi(0)‖

)
,

are considered. LEs are numbers that quantify
whether the distance between two initially close
trajectories δYi of a vector field Y, subject to an
evolution equation dYi/dτ = F i(Y, τ), vanishes
(LE negative) or diverges exponentially (LE pos-
itive). The latter is the hallmark of a chaotic be-
havior. Our basically 3-dimensional phase space

Figure 8: Magnetic field lines appropriate to the tempera-
ture profiles and streamlines shown in Fig. 7.

carries 3 LEs [58–62], which can be ordered in de-
scending form, with the largest Lyapunov expo-
nent denoted by λmax. The error E in the eval-
uation of the LEs has been checked by using
Err = σ (λM) /max (λM), where σ(λM) is the
standard deviation of λmax. In all cases studied
here E is of the order of 1%, which is sufficiently
small for the purpose of the present analysis.

6. Results

In Fig.5 the transition from the stationary to
the chaotic behavior at r ≈ 7.8 is clearly visi-
ble, since Amax becomes continuous and λmax pos-
itive above this secondary instability. The chaotic
regime, however, is interrupted by (two smaller)
regimes (at roughly r = 45 and 50) and a larger
regime (between r ≈ 75 and r ≈ 85), where the
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Figure 9: The top frame shows 3D phase portrait of
{A,B,C} in the periodic window at r = 82. The bottom
frame shows the corresponding Fourier power spectrum of
A and, as inset, the time series of A. The fixed parameters
are k = π/

√
2, P = 10, M3 = 1.1, and M1 = 20.

system is regular (e.g. λmax = 0). For very high
values of the control parameter, r & 116, chaos is
suppressed. However, there is the possibility that
chaotic states reappear for even higher r values,
beyond those we have considered here, in a way
similar to the Lorenz model [64–66]. In the fol-
lowing, we will discuss as examples the chaotic
dynamic behavior at r = 15 and the periodic one
in the large regular window (r = 82). Finally, we
investigate transient chaotic regimes that are pro-
nounced for intermediate magnetic fields.

Figs. 6-8 show the system in the chaotic
regime. In the top frame of Fig. 6 the 3D phase

-0.4 -0.2 0.0 0.2 0.4

Figure 10: (Color online) Phase diagram displaying the
largest Lyapunov exponent color coded as a function of the
field amplitudes M1 and M3 for k = π/

√
2, P = 10 and

r = 7.8. The resolution is 4M1 = 0.1 and 4M3 = 0.05.

portrait reveals a strange attractor of similar
shape as the Lorenz attractor. In the bottom
frame the Fourier power spectrum of the stream
function amplitude A and its corresponding time
series (inset) is shown. The time dependence
is aperiodic and, as a consequence, the Fourier
power spectrum is continuous, characteristic for
chaotic behavior. To compute the Fourier spec-
trum in the chaotic regime we have done the cal-
culations for 50 different random initial condi-
tions. In Fig. 7 the temperature profile and the
streamlines in the chaotic regime are depicted as
a function of the spatial coordinates x and z for
three different times. A movie, included as com-
plementary material, demonstrates the chaotic
nature of the temperature profile as a function
of space and time [63]. In Fig. 8 the appropriate
magnetic field profiles are shown.

In Fig. 9 we show one example of behavior
in the regular window at r = 82. The top frame
shows the 3D phase portrait and in the bottom
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Figure 11: Largest Lyapunov exponent, λmax, as a function
of M3 for M1 = 5 (red, dotted curve), M1 = 10 (blue, con-
tinuous curve), and M1 = 20 (purple, dash-dotted curve),
for k = π/

√
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Figure 12: Time series of A in a chaotic transient regime
for k = π/

√
2, P = 10, r = 7.8, M1 = 10 and M3 = 4.15.

one the Fourier power spectrum of A and its cor-
responding time series (inset) is presented. We
observe that the trajectory is a closed orbit and
there are only discrete peaks in the Fourier spec-
trum, which is expected for a regular (periodic or
quasi-periodic) motion.

Above, we have discussed the dynamic behav-
ior as a function of the applied temperature gra-
dient. We now switch to the dependence on the
external magnetic field. For somewhat smaller ex-
ternal fields and larger magnetic field nonlinear-
ity, the transition between the stationary regime
and the chaotic one is more complicated. Fig. 10
shows a color-coded λmax phase diagram as a func-
tion of both magnetic numbers, M1 and M3 for a

fixed value of r. For small values of M1 and M3

λmax is negative and the system regular, while for
larger values of these parameters there is chaos.
However, the transition region is not sharp, but
diffuse, presenting multiple transitions between
chaotic to regular motion. In order to understand
this transition three cuts of the phase diagram at
different values of M1 are plotted in Fig. 11. For
low M1 there is no transition, while for large M1

the transition at increasing M3 is almost direct
from stationary to chaotic. In the intermediate
case, M1 = 10 there is a series of stationary-chaos
transitions in broad range of M3 values, before
for larger M3 the chaotic state prevails. For one of
these intermediate stationary states atM3 = 4.15,
where λmax = −0.0461, A(τ) is shown in Fig. 12.
There is a transient chaotic behavior preceding
the stationary state. Such transitions take place
at a time scale that is by a factor of 20 smaller
than our maximum integration time. Changing
slightlyM3, a true chaotic state with positive λmax
is found.

For the material parameters (M1 = 20, M3 =
1.1) chosen in the phase diagram Fig. 5 a higher
resolution picture (Fig. 13) shows a very tiny
regime (r ≈ 7.7−7.8) with a few transient chaotic
solutions, before for r & 7.8 the chaotic regime
is reached. Note, that this transition occurs well
before the linear stability of the stationary state
breaks down at rc = 9.1, cf. Fig.2. This phe-
nomenon that a strange attractor appears at a
reduced Rayleigh number smaller than the criti-
cal threshold rc from the linear stability analysis,
also happens in the Lorenz system [64].

Finally, we have looked at the Prandtl num-
ber dependence. Fig. 14 shows a color-coded λmax
phase diagram as a function of the magnetic num-
ber M1 and the Prandtl number P . Here, the
chaotic region occurs in a compact pattern of a
rather characteristic shape. For small P . 4 there
is no chaos for any M1. Similarly, chaos is sup-
pressed for high P values, where the relevant P
decreases with decreasing M1.
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Figure 13: Higher resolution version of the phase diagram
Fig. 5 near the stationary to chaotic transition (k = π/

√
2,

P = 10, r = 7.8, M1 = 10 and M3 = 4.15).

7. Summary

We have studied the nonlinear convection of a
ferrofluid in the two-dimensional spatial case. In
particular we have derived a set of three ordinary
nonlinear differential equations, which describe as
a minimal model the complex dynamic behav-
ior in the presence of an external magnetic field.
Without a magnetic field the classical Lorenz
model is recovered. We have identified parame-
ter regions, where stationary states or those with
chaotic or regular dynamics occur, using the Lya-
punov exponent method, bifurcation diagrams,
and phase portraits. We have performed inten-
sive numerical simulation to get time series and
power spectra of the stream function amplitude as
well as spatial temperature profiles in the chaotic
regime. We have found that the system has mul-
tiple transitions between regular and chaotic be-
havior in parameter space. Close to the transition
from the stationary to a chaotic state, which oc-
curs slightly below the linear stability boundary,
the stationary states show transient chaotic be-
havior in time. Finally, we remark that our gener-
alized Lorenz system has certain similarities with
the one found for dielectric liquids subject to AC
electric fields [17]; the complete comparison be-
tween both systems will be presented in future
works.

-1.0 -0.5 0.0 0.5

Figure 14: (Color online) Phase diagram displaying the
largest Lyapunov exponent λmax color coded as a function
of the field amplitude M1 and the Prandtl number P for
k = 3, r = 15 and M3 = 1.1. The resolution is 4P = 0.2
and 4M1 = 0.2.

8. Acknowledgments

D.L. acknowledges the partial financial sup-
port from FONDECYT 1120764, Millennium Sci-
entific Initiative, P10-061F, Basal Program Cen-
ter for Development of Nanoscience and Nan-
otechnology (CEDENNA) and UTA-project 8750-
12. P.G.S. is grateful to Bangalore University for
encouraging his research.

References

[1] E.N. Lorenz, J. Atmos. Sc. 20, 130 (1963).
[2] J. Stavans, F. Heslot, and A. Libchaber, Phys. Rev.

Lett. 55, 596 (1985)
[3] J.K. Bhattacharjee Convection and Chaos in Fluids,

(World Scientific Publishing, Singapur, 1987); and
references therein.

[4] A. P. Vincent and D. A. Yuen, Phys. Rev. A 38, 328
(1988).

[5] A. Jayaraman, J. D. Scheel, H. S. Greenside, and P.
F. Fischer Phys. Rev. E 74, 016209 (2006)

[6] R. W. Walden, Paul Kolodner, A. Passner, and C. M.
Surko, Phys. Rev. Lett. 55, 496(1985).

10



[7] A. E. Deane, E. Knobloch, and J. Toomre, Phys. Rev.
A 36, 2862 (1987).

[8] R.E. Khayat, J. Non-Newtonian Fluid Mech. 53, 227
(1995).

[9] E. Abu-Ramadan, J. M. Hay, R. E. Khayat, J. Non-
Newtonian Fluid Mech. 115, 79 (2003).

[10] L.J. Sheu, L.M. Tam, J.H. Chen, H.K. Chen, K.T.
Lin, Y. Kang, Chaos Solitons Fractals 37, 113 (2008).

[11] P.G. Siddheshwar, G.N. Sekhar, G. Jayalatha, J. Non-
Newtonian Fluid Mech. 165, 1412 (2010).

[12] P. Vadasz, S. Olek, Int. J. Heat Mass Transfer 41,
1417 (1998).

[13] L.J. Sheu, Chaos Solitons Fractals 30, 672 (2006).
[14] J.M. Jawdat, I. Hashim, Int. Comm. Heat Mass

Transfer 37, 629 (2010).
[15] M.N. Mahmud, I. Hashim, International Communi-

cations in Heat and Mass Transfer 38, 481 (2011).
[16] I. Kobori and H. Yamaguchi, J. Magn. Magn. Mater.

122, 290 (1993).
[17] P.G. Siddheshwar and D. Radhakrishna, Commun.

Nonlinear Sci. Numer. Simulat. 17, 2883 (2012).
[18] S. Odenbach, Magnetoviscous Effects in Ferrofluids

(Springer Lecture Notes in Physics, Berlin, 2002).
[19] S. Odenbach (ed.), Colloidal Magnetic Fluids

(Springer Lecture Notes in Physics, Berlin, 2009).
[20] B.A. Finlayson, J. Fluid Mech. 40, 753 (1970).
[21] K. Gotoh and M. Yamada, J. Phys. Soc. Jpn. 51,

3042 (1982).
[22] P.J. Blennerhassett, F. Lin and P.J. Stiles, Proc. R.

Soc. London A 433, 165 (1991).
[23] M.D. Gupta and A.S. Gupta, Int. J. Eng. Sci. 17, 271

(1979).
[24] S. Venkatasubramanian and P.N. Kaloni, Int. J. Eng.

Sci. 32, 237 (1994).
[25] P.N. Kaloni and J.X Lou, J. Magn. Magn. Mater.

284, 54 (2004).
[26] G.K Auernhammer and H.R. Brand, Eur. Phys. J.

B16, 157 (2000).
[27] A. Ryskin and H. Pleiner, Phys. Rev. E 69, 046301

(2004).
[28] D. Laroze, J. Martinez-Mardones, J. Bragard and P.

Vargas, Physica A 371, 46 (2006).
[29] D. Laroze, J. Martinez-Mardones, L.M. Pérez and Y.
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