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Abstract. We discuss the symmetry properties as well as the dynamic behavior of various non-polar nematic
liquid crystal phases with tetrahedral order. We concentrate on systems that show biaxial nematic order
coexisting with octupolar (tetrahedral) order. Non-polar examples are phases with D2 and S4 symmetries,
which can be characterized as biaxial nematics lacking inversion symmetry. It is this combination that
allows for new features in the statics and dynamics of these phases. The D2-symmetric phase is chiral,
even for achiral molecules, and shows ambidextrous chirality in all three preferred directions. The achiral
S4-symmetric phase allows for ambidextrous helicity, similar to the higher-symmetric D2d symmetric phase.
Such phases are candidates for nematic phases made from banana-shaped molecules.

1 Introduction

Ordinary nematic liquid crystal phases are described by
the symmetric, traceless second-rank (quadrupolar) order
parameter Qij [1, 2]. The use of tetrahedral (octupolar)
order by a rank-3 order parameter tensor, Tijk [3–5] to
describe bent-core liquid crystal phases [6,7] has by now a
long tradition [8–13]. Here, we will discuss low symmetry
phases that have both, tetrahedral and nematic order, and
are non-polar. We only consider cases where the relative
orientation of nematic and tetrahedral order is fixed, i.e.
by strong coupling terms in the appropriate Ginzburg-
Landau description. Opposite cases have been discussed
in Ref. [11, 13].

The optically isotropic Td phase shows a spontaneous
breaking of orientational symmetry due to Tijk, only, and
serves to explain optically detected isotropic to isotropic
phase transitions. When the tetrahedral order parame-
ter is combined with a uniaxial nematic one, with the
nematic director along one of the four-fold improper ro-
tation axes of Tijk, an optically uniaxial D2d-symmetric
phase (called D2d) results [14] that can explain the phase
transition between two optically uniaxial bent-core liquid
crystal phases. The symmetries and dynamics of the D2d
phase has recently be discussed in detail by the present
authors [14]. In the present manuscript we will discuss
the hydrodynamics of phases that show a combination of
tetrahedral order and biaxial nematic order, with one of
the nematic directors along an improper four-fold tetra-
hedral symmetry axis, in particular phases of D2 and S4
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symmetry [3], which we will call D2 and S4 phases, re-
spectively.

The principal difference between the conventional
isotropic, uniaxial nematic and biaxial nematic phases on
the one hand, and the Td, D2d, and D2 and S4 phases on
the other, is the lack of inversion symmetry in the latter
ones due to their tetrahedral order, which changes sign,
Tijk to −Tijk, under inversion. Somewhat less important,
but manifest in some details is the overall lower symme-
try that the tetrahedral phases have compared to their
conventional, inversion-symmetric counter-parts. Both as-
pects will be dealt with in detail below. Another common
feature of all these phases is their non-polarity, which is a
result of the special mutual orientation of the nematic and
tetrahedral axes. If a nematic axis is oriented along some
(proper) tetrahedral rotation axes, which are described by
polar vectors, the resulting phases (e.g. of C3v and C2v)
are polar. We will discuss those cases elsewhere.

The hydrodynamics of (these low symmetry) phases is
solely based on their symmetry. Therefore, we first discuss
those symmetries and the structures of the tetrahedral and
nematic directors involved without relying on any model
for a possible molecular packing. For the simpler phases
there are some intuitive packing models, which we, how-
ever, do not explicitly need to use. It is also obvious that
we only consider symmetry properties of the phases, not
those of specific molecules, since it is well-known that the
latter not necessarily coincide with the former, e.g. biaxial
calamitic molecules rarely form biaxial nematic phases, or
polar calamitic molecules mostly form non-polar nematic
phases.
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Fig. 1. The 4 tetrahedral vectors nα (α = 1, 2, 3, 4) from the
origin to the tetrahedral corners. In the D2d phase the director
n is along the z axis, which remains to be an improper 4̄ axis:
rotation by π/2 leads to a (non-equivalent) inverted structure,
while an additional inversion (e.g. z → −z) restores the original
structure. The x and y axes are 2-fold symmetry axes and the
planes spanned by n1/n4 and n2/n3 are mirror planes (both
contain n).

We only deal with phases made of achiral molecules,
except for Sec. 4, where we briefly make the connec-
tion with the T -symmetric chiral tetrahedral phase T and
where we make use of a specific packing model.

2 Symmetries

2.1 The D2d Phase

The tetrahedral order parameter Tijk = Σ4
α=1n

α
i n

α
j n

α
k is

expressed by 4 unit vectors, nα, with α = 1, 2, 3 and 4,
the position vectors of a tetrahedron. It is fully symmet-
ric in all three indices and odd under parity, since the
nα’s are (polar) vectors. Tetrahedral order by itself is non-
polar, since Tikk ≡ 0. Tijk breaks rotational symmetry
completely and the associated Goldstone modes (hydro-
dynamic variables) are its three (properly normalized) ro-
tations δΓi ∼ εipqTpkl δTqkl. In the D2d phase with the
director, n, rigidly attached to an improper 4̄ axis, the
broken rotational symmetry is the same. However, in that
case it is more appropriate to use, as hydrodynamic vari-
ables, two rotations of the director, δn with n · δn = 0,
and one rotation about n [14]. The former are similar to
those of ordinary uniaxial nematics, while the latter does
not exist there, since rotational symmetry is not broken
in the plane perpendicular to n and n is a continuous
rotation axis. As a result, the overall symmetry is D∞h
for uniaxial nematics and D2d for the D2d phase where n
is an improper 4-fold axis. In both phases there are ad-
ditionally 2 (degenerate and perpendicular) two-fold ro-
tation axes, both perpendicular to n, and 2 (degenerate)

mirror planes that include n and – in the case of D2d –
two opposite tetrahedral vectors, respectively, as depicted
in Fig. 1. The presence of the director n removes all 3-fold
tetrahedral symmetry axes. The lower transverse symme-
try of the D2d (compared to the uniaxial nematic) phase
has some implications on the structure of several material
tensors, e.g. there are 7 genuine quadratic Frank coeffi-
cients (rather than 3) and 6 ordinary viscosities (rather
than 5) reflecting similarities to a tetragonal biaxial ne-
matic phase. There are some specific nonlinear effects in
the transverse rotational dynamics of the D2d phase, for
which we refer to Ref. [14].

A more profound difference between a standard ne-
matic and the D2d phase arises from the broken inversion
symmetry in the latter. The outstanding feature is the
existence of a linear gradient term in the free energy

εl = ξ Tijk ni∇jnk, (1)

which is neither related to linear splay (as in polar ne-
matics), nor to linear twist, (as in chiral nematics), but
involves the combination ∇xny +∇ynx. Generally, linear
gradient terms have the tendency to favor energetically
non-homogeneous ground states. In the D2d case these
are helical structures of the director and the tetrahedral
vectors along the x or the y axis (in Fig. 1). Left and
right handed helices can be discriminated based on the
distinction of a tetrahedron and its inverted structure. All
these possible helices are energetically degenerate and the
phenomenon has been called ”ambidextrous chirality” in
Ref. [14]. However, since D2d is not chiral, the name ”am-
bidextrous helicity” is more appropriate.

There are hydrodynamic effects of the broken inversion
symmetry already in the (optically) isotropic Td phase,
namely reversible cross-couplings between flow and the
thermal, electrical, and solute degrees of freedom, i.e.
electric fields, temperature and concentration gradients
produce stresses, while symmetric velocity gradients give
rise to electric, thermal, and concentration currents [8].
These effects are also present (in a uniaxial manner) in
the D2d phase and can be expected in the lower sym-
metry tetrahedral nematic phases as well. To this group
of broken-inversion effects also belong the odd-powered
electric, εE ∼ TijkEiEjEk, and magnetic external field
effect, εH ∼ TijkHiHjEk that give rise to electric field
dependent effective dielectric and magnetic susceptibili-
ties (and second harmonic generation). In the D2d phase
there is a competition between the ordinary nematic di-
electric anisotropy that aligns the director parallel or per-
pendicular to the field, and εE that favors alignment of a
tetrahedral vector along the field – a situation incompat-
ible with the structure of D2d leading to frustration and
to possible reorientation effects as a function of the field
strength [14].

2.2 The D2 Phase

A D2 phase is obtained by combining rigidly the tetra-
hedral vectors nα (α = 1, 2, 3, 4) with an orthorhombic
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Fig. 2. Two projections of the 4 tetrahedral vectors nα

(α = 1, 2, 3, 4) and the orthorhombic directors l,m,n in the D2
phase. A circle (asterisk) denotes tetrahedral vectors that also
have a component sticking out of (pointing into) the projection
plane. Only three 2-fold symmetry axes (the x, y, z axes) are
left, but no mirror planes.

biaxial nematic such that the (mutually orthogonal) di-
rectors l,m,n are along the three (improper) 4̄ axes of
the tetrahedron. In a Ginzburg-Landau description with
the tetrahedral order parameter and the biaxial nematic
one, the fourth order coupling term D4QijQklTmikTmjl
exactly leads to this configuration as the minimum for
D4 > 0. In Fig. 2 2-dimensional projections of this struc-
ture with the nematic directors along the x, y, z axes are
shown. Since the nematic directors in the orthorhombic
case are not equivalent (e.g. there is no n ⇔ m invari-
ance), the (improper) 4-fold symmetry axes are reduced
to (proper) 2-fold ones. For the same reason, the mirror
planes of the D2d phase (n1/n4 and n2/n3) are removed
and no mirror planes exist. A phase that only has (proper)
rotation axes as symmetry elements is chiral, even if only
achiral molecules are involved. Another example of this
structural chirality would be the smectic CB2 (B2) phase

of bent-core liquid crystals [15]. In the D2 phase the chiral-
ity is manifest by the existence of a pseudoscalar quantity

q0 = ninjmkmplqlrεikqTjpr (2)

This definition is not unique and could have been replaced
by q′0 = ninjmkmplqlrεiqkTjpr, which is just −q0 denoting
opposite handedness. It is a hallmark of these structurally
chiral phases that both types of handedness are equal in
the sense that there is no energetic preference for one or
the other; this has been called ”ambidextrous chirality”
[16].

In the D2 phase the three independent rotations of
the rigid structure are the hydrodynamic degrees of free-
dom (Goldstone modes), like in the D2d and in the bi-
axial nematic phases [17, 18]. We will use the biaxial ne-
matic picture and describe these rotations by rotations of
the directors l,m,n under the condition that their mu-
tual orientation, and their orientation w.r.t. the tetrahe-
dral vectors remains constant. This guarantees that only
rigid rotations are involved, since internal deformations of
the structure and relative rotations among parts of the
structure are non-hydrodynamic and will not be consid-
ered here. However, compared to ordinary orthorhombic
biaxial nematics, we have to take into account additional
effects due to the broken inversion symmetry (because of
Tijk) and due to chirality (because of q0). We can ex-
pect linear gradient terms in the free energy of the type
present in the D2d phase (εl) as well as chiral linear twist
terms of the cholesteric type. A full discussion of all bro-
ken inversion- and chirality-related hydrodynamic aspects
will be given below.

2.3 The S4 Phase

Above, we have introduced the structure of the D2d phase
as a uniaxial nematic director being along one of the 4̄ axes
of the tetrahedron. Equally well, the D2d phase can be
described by adding a tetragonal biaxial nematic to the
tetrahedron with the nematic preferred directions along
the three 4̄ tetrahedral directions. Since the two trans-
verse directors m and l are equivalent (there is a m ⇔ l
invariance), the tetragonal preferred direction n is the
(improper) 4-fold rotation axis, m and l are the 2-fold
symmetry axes and the planes set by n1/n4 and n2/n3

are the mirror planes.
Using this picture of the D2d phase it is easy to get to

the S4 phase: Rotate the directors m and l in the plane
transverse to n by a finite angle (other than π/4 and π/2)
as in Fig. 3. It is obvious to see that due to this rotation the
mirror planes are removed as well as both 2-fold rotation
axes (x, y axes). Only the (improper) 4-fold symmetry axis
(n or z axis) is left.

This phase is rather similar to the D2d phase. There is
broken inversion symmetry due to Tijk and ambidextrous
helicity due to a linear gradient term in the free energy
similar to Eq. (1). There is no chirality due to the existence
of an improper rotation axis. It is easy to see that the
pseudoscalar of the D2 phase, q0 Eq. (2), has to be zero
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Fig. 3. The projection of the 4 tetrahedral vectors into the
x, y plane perpendicular to the director n in the S4 phase.
The tetragonal nematic directors m and l are equivalent and
rotated by an angle other than π/4, thereby removing any
mirror planes as well as the 2-fold axes. The z axis remains to
be an improper 4̄ axis

in the S4 phase, because of the m ⇔ l equivalence (that
requires q0 = −q0 = 0).

2.4 The C2v Phase

We have discussed the symmetry change from a D2d to a
D2 phase by replacing the uniaxial nematic director with
a orthorhombic biaxial one, such that the nematic pre-
ferred directions are along the 4̄ axes of the tetrahedron.
If the two biaxial directors m and l are along the projec-
tions of the tetrahedral vectors (i.e. rotated by π/4 com-
pared to the D2 case), a C2v-symmetric phase (C2v) is
obtained, Fig. 4. The former 4̄ axis along n is reduced to
a (proper) 2-fold symmetry axis and the planes spanned
by n1/n4 and n2/n3 are still mirror planes. Therefore,
the C2v phase is achiral, and the q0 defined in Eq. (2)
vanishes, because nimj lkTijk is zero for this special orien-
tation of the biaxial directors.

The C2v phase is polar, with the polar axis along n
and given by Tijk(mjmk − lj lk). This polarity is neither
connected to the polarity of the molecules, nor to that of
external fields. In the S4 phase, such a vector does not
exist, because of the tetragonal m⇔ l invariance.

2.5 The C2 Phase

The mirror planes of the C2v phase can be removed, and
the symmetry further reduced to C2, if the biaxial di-
rectors are neither along the tetrahedral projections, nor
along the x, y direction, Fig. 5. Only the 2-fold symmetry
axis is left and therefore, the C2 phase is chiral with a
nonzero pseudoscalar q0 given by Eq.(2). The 2-fold axis

Fig. 4. The projection of the C2v structure into the x, y plane
perpendicular to the director n. The orthorhombic nematic di-
rectors m and l are rotated by π/4 w.r.t. the x, y axes, thereby
preserving the mirror planes n1/n4 and n2/n3.

Fig. 5. As in Fig. 4, but with the orthorhombic nematic di-
rectors m and l rotated by an angle other than π/4, thereby
removing any mirror planes. Only a 2-fold (proper) rotation
axis, the z axis, remains as a symmetry element in the C2
phase.

is polar, as in the C2v phase. Starting from an S4 phase,
such a C2 phase is obtained by replacing the tetragonal
biaxial directors by orthorhombic ones.

In smectic liquid crystals C2v- and C2-symmetric
phases are rather frequent, e.g. the tilted smectic C phases,
made of achiral and chiral calamitic molecules, respec-
tively [2]. For bent-core smectic phases with a molecular
polar axis within the layer, the untilted CP [6]) and the
tilted CB2 [15] also show these symmetries, respectively.
In the following, however, we will not discuss the hydrody-
namics of polar phases but concentrate on the non-polar
ones.
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3 Hydrodynamics

3.1 D2 Hydrodynamics

3.1.1 Hydrodynamic Variables D2

In Sec. 2.2 the structure of the D2 phase is discussed. It
is an orthorhombic biaxial nematic phase that lacks in-
version symmetry and is chiral. The hydrodynamics of
conventional orthorhombic biaxial nematics has been de-
scribed in Ref. [17] (for less symmetric biaxial nematics cf.
also [18]) using rotations δn, δm, and δl (with n · δn = 0,
m · δm = 0, and l · δl = 0,) of the three mutually or-
thogonal preferred directions as the hydrodynamic Gold-
stone variables due to the broken rotational symmetry.
Of course, only rigid rotations are hydrodynamic, since
any internal deformations of the structure cost energy and
lead to nonhydrodynamic excitations, which are excluded
by the additional conditions m · δn + n · δm = 0 and
l ≡ n×m. Since there is a l→ −l equivalence, the alter-
native definition l ≡m×n is also possible, and the results
must not depend on which definition has been used.

In the D2 phase inversion symmetry is broken by the
existence of a tetrahedral tensor Tijk that is rigidly cou-
pled to the triad of nematic directors (n, m, and l are
along the three 4̄ axes of the tetrahedron). Therefore, rota-
tions of Tijk are no independent hydrodynamic variables,
and the orientation of Tijk is always given by the actual
orientation of the director triad. Nevertheless, Tijk can
give rise to additional material tensors (or parts of them)
due to the lack of a Tijk → −Tijk equivalence, in contrast
to the conventional n → −n, m → −m, and l → −l
equivalence of the nematic directors. Similarly, the chiral-
ity of the D2 phase does not give rise to additional hy-
drodynamic variables, but allows for additional couplings
between the hydrodynamic fields due to the existence of
the pseudoscalar q0, defined in Eq. (2).

There are several ways of setting up the hydrodynamic
description of the D2 phase. One can use as variables,
e.g., the three-dimensional rotations of the tetrahedral
structure, δΓi ∼ εipqTpkl δTqkl (as in the Td phase [14]),
or the three independent director rotations, e.g. m · δn,
(n×m) ·δn, and (m×n) ·δm (as is common in the liquid
crystal literature). We will choose the latter one, in order
to make easier contact to the local equilibrium frame in
terms of the directors (n0 = ez and m0 = ey).

The Gibbs relation, connecting changes of the total
energy density dε with those of all hydrodynamic variables
(entropy density σ, mass density ρ, momentum density gi,
concentration c, and the director rotations) [19,20] can be
written as

dε = Tdσ + µdρ+ vidgi + µcdc+ h̄ni dni + h̄mi dmi

+Φnijd∇jni + Φmijd∇jmi (3)

thereby defining the conjugate quantities (temperature T ,
chemical potential µ, velocity vi, relative chemical po-
tential µc, and the ’molecular fields’ h̄n,mi and ∇jΦn,mij )
as appropriate partial derivatives of ε. When combining
the molecular fields into hn,mi ≡ h̄n,mi − ∇jΦn,mij one has

to take into account that d∇jni 6= ∇jdni (for details
cf. [17,21]), since finite three-dimensional rotations gener-
ally do not commute; the same phenomenon occurs when
using δΓi as variables [14].

3.1.2 Statics D2

We will not repeat the hydrodynamics of ordinary biax-
ial nematics, but concentrate on the differences in the D2
phase related to chirality and the lack of inversion sym-
metry. It is obvious that the form of the quadratic, Frank-
type gradient energy of the director rotations is not af-
fected by the lack of inversion symmetry, nor by the chi-
rality. Therefore, the expression for ordinary orthorhom-
bic biaxial nematics (Eq. (3.15) of [17]) is valid for the D2
phase, as well. It has the form

dεg = A
(1−8)
ijkl (∇jni)(∇lnk) +A

(9−11)
ijkl (∇jmi)(∇lmk)

+A
(12−15)
ijkl (∇jni)(∇lmk) (4)

The material tensors Aijkl are functions of the nematic
directors and contain 15 (rotational) elastic coefficients,
three of which denote surface contributions [22]. The latter
can be eliminated by choosing A3 = A6, A12 = A13, and
A14 = A15 [23].

On the other hand, linear gradient terms, absent in or-
dinary biaxial nematics, are possible in the D2 phase, due
to the existence of both, Tijk (as in the D2d phase) and
q0 (as in the cholesteric phase). We get six contributions

dεlg = Tijk(ξ1ni∇jnk + ξ2mi∇jmk + ξ3li∇j lk)

+ q0εijk(k1ni∇jnk + k2mi∇jmk + k3 li∇j lk) (5)

The terms of the first line are the generalization of Eq.
(1) of the D2d phase and describe ambidextrous helic-
ity (cf. Sec.2.1), since the inverted structure is different
from the non-inverted one, but leads to the same energy
reduction. The terms of the second line are known for bi-
axial cholesterics [24] and are the generalization of the
well-known linear twist terms of chiral uniaxial nematics
(cholesterics). In the D2 phase, they describe ambidex-
trous chirality [16], since the pseudoscalar q0 is not due
to a molecular chirality, but originates from the ordered
structure, Eq. (2). Both signs of q0 belong to different
structures, but lead to the same energy reduction. This
situation is similar to that of the smectic B2 phase of
bent-core liquid crystals [15]. In those phases that have
only one linear gradient term, the helical structure is a
defect-free energetic minimum state. However, in the D2
phase each of the six terms individually minimizes the en-
ergy by a helix perpendicular to the appropriate director.
Obviously, it is impossible to have a common helix axis for
all of them and defects necessarily occur. Only simple he-
lices of two of the directors with the (constant) helix axis
given by the third one are defect-free patterns and reduce
the energy. Of the three different possibilities one of the
minima might be the lowest, but none of them involves all
the linear terms of Eq. (5). In that sense, the D2 phase is
frustrated.
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If linearized about a homogeneous state with n0, m0,
l0, and T 0

ijk all constant, only two of the three terms in
the first line are independent of each other. In that limit
the terms in the two lines have a different structure, e.g.
∇xny +∇ynx versus ∇xny−∇ynx, although the full non-
linear expressions give rise to helical structures in both
cases.

If there are linear gradient terms, there are also static
Lehmann-type energy contributions [25,26], bilinear in lin-
ear director gradients and variations of the scalar vari-
ables, S ∈ {σ, ρ, c}

dεF =
∑
S

δS
(
Tijk

[
ξS1 ni∇jnk + ξS2mi∇jmk + ξS3 li∇j lk

]
+ q0 εijk

[
kS1 ni∇jnk + kS2 mi∇jmk + kS3 li∇j lk

])
(6)

where the sum over S comprises all scalar variables. Nine
of these terms (ξS1,2,3) have their origin in the lack of in-

version symmetry, and the other nine (kS1,2,3) are due to
the chirality of the D2 phase.

3.1.3 Dynamics D2

The dynamics is described by conservation laws for the
conserved variables and balance equations for the non-
conserved ones [17]. The former contain (the divergence
of) the currents (e.g. the stress tensor, σij , in the momen-
tum conservation law, the heat current), while in the latter
case a quasi-current balances the temporal changes of the
variable (e.g. ṅi + Xn

i = 0). Both, currents and quasi-
currents are additively split into a reversible (superscript
R) and a dissipative part (superscript D). The irreversible
part of the dynamics can be derived from the dissipation
function (or the entropy production R, which acts as the
source term in the entropy balance), while the reversible
part is non-potential, requires R = 0 (conserved entropy),
and often (but not always) follows from general invariance
principles [20].

The dissipative dynamics of the D2 phase is rather
similar to that of biaxial nematics. In particular, there are
nine flow viscosities, three rotational viscosities according
to the three director degrees of freedom, and each second
rank material tensor (e.g. describing heat conduction, dif-
fusion, and thermo-diffusion) contains three material co-
efficients [17]. In addition, there are dissipative Lehmann-
type terms due to the lack of inversion symmetry (as in
the D2d phase) and due to chirality (as in cholesterics)

2RL =
∑
Q

(∇kQ)
(
Tijkh

Q
ij + q0εijkH

Q
ij

)
(7)

where

hQij = (ψQ1 mjmp + ψQ2 lj lp)nih
n
p + ψQ3 lj lpmih

m
p (8)

and HQ
ij with the same structure as hQij , but the coeffi-

cients ψQ1,2,3 replaced by different ones ΨQ1,2,3. The sum over

Q comprises ∇kQ ∈ {∇kT,∇kµc}, the thermodynamic

forces related to the thermal degree of freedom and the
concentration. Variational derivatives of R with respect to
these forces and hni , hmi lead to the appropriate dissipa-
tive contributions in the heat and concentration currents,

and the quasi-currents Xn,D
i , Xm,D

i , respectively [20]. To-
gether with the static Lehmann-type contribution, they
lead to the different Lehmann effects, rotations of the di-
rectors due to applied thermodynamic forces [25,26], and
the inverse effects [27].

One part of the reversible dynamics, in particular
transport contributions in the total time derivatives and
couplings to rotational flow, Ωij ≡ (1/2)(∇jvi −∇ivj), is
due to general invariance principles, like Galilean invari-
ance and rotational covariance [19,20]. For biaxial nemat-
ics this has been investigated in detail in Ref. [17], where
it has been shown that the requirement of zero entropy
production R = 0, not only leads to counter terms in
the stress tensor (the isotropic pressure and the nonlinear
Ericksen stresses due to nematic deformations), but also
allows - with the help of the non-commutativity relations
of finite rotations - to write the anisotropic part of the
stress tensor in the form of a total divergence, thus guar-
anteeing angular momentum conservation, locally. This
also applies to the D2 phase and will not be repeated
here. In nematics there is a phenomenological reversible
coupling between director reorientation and symmetrized
flow, Aij ≡ (1/2)(∇jvi+∇ivj), known as ’flow alignment’
and ’back flow’. In uniaxial nematics there is one phe-
nomenological parameter (related to the flow alignment
angle under shear flow), in the D2d phase there are two
of them and orthorhombic biaxial nematics as well as the
D2 phase have three such parameters [17].

In the phases with tetrahedral order there are re-
versible couplings between the currents of the scalar con-
served quantities (except the total density) and sym-
metrized flow of the form

jS,Ri = ΓSip TpjkAjk (9)

where each ΓSij contains one and two parameters for the
Td and the D2d phase respectively, while for the D2 phase

ΓSij = ΓS1 ninj + ΓS2 mimj + ΓS3 lilj (10)

contains three parameters for each S ∈ {σ, c}. Zero en-
tropy production requires the counter terms in the stress
tensor

σij = −Tpij(Γ ckp∇kµc + Γσkp∇kT ) (11)

There are no additional reversible contributions to the
dynamics in the D2d phase that are based on the chirality
of that phase. In particular, a chiral version of Eq.(11),
Tpij replaced by q0εpij , is not possible due to the rotational
covariance that does not allow for phenomenological coup-
lings between jSi and Ωij .

3.1.4 External Fields D2

Generally, external fields can orient liquid crystals. Elec-
tric Ei and magnetic fields Hi reorient the nematic direc-
tor either along the field or perpendicular to it, depending
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on the sign of the dielectric or magnetic anisotropy. In bi-
axial nematics (and in the D2 phase as well) there are two
orienting free energy terms for each field (in the first line
with U ∈ {E,H}),

εquadf =− 1

2

(
εU1 ninj + εU2 mimj

)
UiUj (12)

+
1

2
q0 εipqTijk

(
χU1 npnj + χU2 mpmj

)
UkUq

since a possible third term ∼ lilj = δij − ninj − mimj

would only lead to an additional isotropic contribution. In
the D2 phase with both, tetrahedral order and chirality,
there is a second class of director orienting terms (second
line), which allows for an orientation of n (or m) perpen-
dicular to the fields, even for positive εU1,2, if |χU1,2q0T0| is
large enough. Obviously, not all directors can be aligned
simultaneously.

In any phase with a tetrahedral structure, there are
energy contributions cubic in the field strengths

εcubf =− Tijk
(
ζE1 ninp + ζE2 mimp + ζE3 lilp

)
EpEjEk

+Tijk
(
ζEH1 ninp + ζEH2 mimp + ζEH3 lilp

)
EpHjHk

+q0εpik
(
ζEH3 njnp + ζEH4 mjmp

)
EiHjHk (13)

They orient the tetrahedral structure such that one tetra-
hedral vector is along the electric field direction, with the
three others symmetrically off by the tetrahedral angle
θT = 2arccos(−1/3). The mixed electric-magnetic terms
are non-zero for parallel as well as perpendicular fields.
The chirality of the D2 phase allows for another cubic en-
ergy contribution, linear in the electric and quadratic in
the magnetic field. It orients the directors perpendicular
to the electric field, if the magnetic field is also perpendic-
ular to the electric one, but oblique to the directors. In all
these cases the orientation of Tijk is in conflict with the di-
electric director orientation leading to an unconventional
field dependence of the director orientation [14].

Like in a biaxial nematic phase, there are flexoelectric
energy contributions due to an external electric field

εfl = e1Einj∇jni + e2Eini∇jnj (14)

+ e3Eimj∇jmi + e4Eimi∇jmj

+ e5q0TjkqEinkεijp∇qnp + e6q0TjkqEimkεijp∇qmp.

For a constant electric field, there is only one independent
term in the first line and one in the second line (up to
surface contributions). The terms of the third line are due
to both, the chirality and the lack of inversion symmetry.
If linearized these terms involve ∇xnx −∇yny for E and
n0 along the z axis (and ∇ymy − ∇zmz for E and m0

along the x axis), which is quite different from the usual
nematic flexoelectric contributions ∼ divn (or ∼ divm).

Boundaries also act as orienting means in liquid crys-
tals. Generally, boundaries can be described by their nor-
mal vector, b. Since b is a polar vector with the same sym-
metry properties as the electric field, all electrical terms
in Eqs. (12) and (13) describe the orientation by bound-
aries, if E is replaced by b. In particular, directors and

the tetrahedral structure are oriented differently, incom-
patible with the structure of the D2 phase, which prevents
a homogeneous, defect-free orientation of that phase at
boundaries.

If there are electric charges in the material, charge con-
servation can be added to the list of hydrodynamic equa-
tions, ρ̇e+∇ijEi = 0. In that case the dissipative Lehmann
effect, Eq. (7), and the reversible flow-current coupling,
Eqs. (9) and (11), also contain linear electric field contri-
butions

2RL = Ek
(
Tijkh

E
ij + q0εijkH

E
ij

)
(15)

jE,Ri = (ΓE1 ninj + ΓE2 mimj + ΓE3 lilj)TpjkAjk (16)

σij = −Tpij(ΓE1 nknp + ΓE2 mkmp + ΓE3 lklp)Ek (17)

with HE
ij and hEij of the structure defined in Eq. (8).

3.2 S4 Hydrodynamics

The S4 phase has the same hydrodynamic variables as the
D2d phase, in particular rotations of the preferred direc-
tion n (the tetragonal axis) and a rotation about this axis.
The latter can be described either by appropriate rotations
of the tetrahedral structure, δΩ ≡ (1/4α)niεipqTpjkδTqjk,
with α = (32/27)T 2

0 , or by (in-plane) rotations of m or l.
We will use δΩ to make close contact with the D2d hy-
drodynamics [14]. The only difference is the reduced sym-
metry of S4 compared to D2d, which is manifest in more
complicated structures of material tensors or in some ad-
ditional cross couplings.

We start with the discussion of the statics. The gradi-
ent free energy reads

εg =
1

2
Kikjl(∇ink)(∇jnl) +K7δ

⊥
ikεlij(∇lΩ)(∇jnk)

+
1

2
(K5ninj +K6δ

⊥
ij)(∇iΩ)(∇jΩ) (18)

with δ⊥ij ≡ mimj+lilj . It contains 8 Frank-type bulk orien-
tational elastic coefficients according to the S4 symmetry.
Five of them are related to the preferred direction n

Kijkl = K3ninjδ
⊥
kl + (K1 − 2K2)δ⊥ikδ

⊥
jl

+K2(δ⊥il δ
⊥
jk + δ⊥ijδ

⊥
kl) +K4npnqTijpTqkl

+K8δ
⊥
rkδ
⊥
tlTijpTrtp , (19)

while K5,6 are transverse coefficients and K7 is a mixed
one. The K8 term, which does not exist in the D2d phase,
gives rise to new combinations of director variations of
the form cos 2Θ sin 2Θ(∇xnx − ∇yny)(∇ynx + ∇xny), if
linearized, where Θ is the in-plane rotation vector as de-
scribed in Fig. 3.

However, there is only one linear gradient energy term
as in the D2d phase

εlg = ξ1niTijk∇jnk, (20)

giving rise to ambidextrous helicity. If linearized, it
involves two different director combinations, (∇xny +
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∇ynx) cos 2Θ + (∇xnx − ∇yny) sin 2Θ. There is no ad-
ditional linear gradient term w.r.t. ∇iΩ, because of the
invariance under m ⇔ l. The same applies to the static
Lehmann-type energy contributions

εF = ξS1 niTijk(δS)∇jnk, (21)

with S ∈ {ρ, σ, c}.
Generally, only material tensors of forth order (or

higher) have a different structure (different number of in-
dependent components) in the S4 and the D2d phase. In
particular, the viscosity tensor, relating the stress tensor
with the symmetric flow tensor, σij = −νijkl∇lvk has an
additional 7th term, νijkl ∼ ν7 δ

⊥
rkδ
⊥
tlTijpTrtp in the S4

phase - quite similar to the K8 Frank-type term discussed
above.

All other material tensors occurring in the static or
dynamic part of the S4 hydrodynamics are of a rank
less than 4 and have the same structure as in the D2d
phase [14]. Therefore, the form of the hydrodynamic equa-
tions is the same and will not be repeated here. However,
in the S4 phase the linearized tensor Tijk has a few more
non-vanishing elements with the effect that there are more
elements coupled than in the D2d phase. An example we
already have presented is the linear gradient term, Eq.
(20), that couples additionally to ∇xnx − ∇yny. In the
following we will discuss similar cases of new coupling el-
ements in the S4 phase compared to the D2d phase. We
will restrict us here to linear hydrodynamics.

In the D2d phase (Eqs. (22)-(25) of [14]) there is a
reversible coupling between shear flow and currents (of
temperature, concentration and charge), and vice versa,
between shear stresses and gradients (of temperature and
concentration) and electric fields, such that shear planes
are perpendicular to the vector quantities. In the S4 phase
also hyperbolical flows and stresses and oblique currents
are involved

jσ,Rx = Γ⊥(cos 2ΘAyz + sin 2ΘAxz)

jσ,Ry = Γ⊥(cos 2ΘAxz − sin 2ΘAyz)

jσ,Rz = Γ‖ (cos 2ΘAxy + sin 2Θ [Axx −Ayy]) (22)

and

σxz = −Γ⊥(cos 2Θ∇yT + sin 2Θ∇xT )

σyz = −Γ⊥(cos 2Θ∇xT − sin 2Θ∇yT )

σxy = −Γ‖ cos 2Θ∇zT
σxx = −σyy = −Γ‖ sin 2Θ∇zT (23)

The dissipative Lehmann-type couplings of the D2d
phase (Eq. (26) of [14]) acquire more coupling elements in
the S4 phase

jσ,Dx = −ψT (cos 2Θhy + sin 2Θhx)

jσ,Dy = −ψT (cos 2Θhx − sin 2Θhy) (24)

and

ṅx = −ψT (cos 2Θ∇yT + sin 2Θ∇xT )

ṅy = −ψT (cos 2Θ∇xT − sin 2Θ∇yT ) (25)

with hx,y = δε/δnx,y. Similar sets of equations (with dif-
ferent material parameters) are obtained by replacing the
temperature current jσ by a concentration current (su-
perscript c) or a charge current (superscript e) and ap-
propriately, the temperature gradient by a concentration
gradient or an electric field in Eqs. (22) - (25).

The orientation of the director (and the tetrahedral
structure) in an external electric field is basically the same
as on the D2d phase. The dielectric anisotropy favors the
director to be parallel or perpendicular to the field, while
the cubic free energy contributions ∼ TijkEiEjEk has
its minimum, if one of the tetrahedral axes is along the
field, leading to frustration. Assuming that the dielectric
anisotropy effect is the dominant one in the S4 phase and
orienting the director (and thus the 4̄ axis) along the z di-
rection by a strong static electric field, a small oscillating
electric transverse field will lead to a reorienting force on
n, which is proportional to E2

x + E2
y due to the dielectric

anisotropy, while for the tetrahedral orientation the reori-
entation force is of the form cos 2ΘExEy+sin 2Θ(E2

x−E2
y).

Thus, this response to an external field can experimentally
reveal the transverse anisotropy in that case.

4 Summary

We have investigated the symmetry properties and the
macroscopic behavior of nonpolar nematic and isotropic
phases with tetrahedral order. The two optically isotropic
phases, Td and T, have cubic symmetry and can possess
a simple ground state that is spatially homogeneous (Td)
or a simple helix due to its handedness (T). The nonpolar
nematic phases found are optically uniaxial (D2d and S4)
or optically biaxial (D2) and belong to the tetragonal and
orthorhombic symmetry system, respectively.

D2d, D2 and S4 all possess linear gradient terms in
their generalized energies, which are not related to the ex-
istence of a pseudoscalar. Such linear gradient terms lead
to the lowering of the energy by the formation of spatially
inhomogeneous ground states. In the present case these
are left- and right-handed helical structures that can be
discriminated based on the difference between the tetra-
hedron and its inverted structure: ambidextrous helicity.

In the D2 phase, which possesses a chiral structure,
one can construct a pseudoscalar, q0. It turns out that the
definition of q0 is not unique in D2 and one can equally
well replace q0 by −q0. The reason is that D2 is struc-
turally chiral: there is no energetic preference for one type
of handedness over the other. Thus one encounters in D2
ambidextrous chirality. This property comes in D2 in addi-
tion to the ambidextrous helicity also present in D2d and
S4.

As a rather unique feature we have demonstrated that
the chiral T phase shows flow alignment in a cubic system.
One finds a stationary alignment of the tetrahedral order
in simple shear that is independent of the flow rate, but
depends linearly on the helical wave vector, q0, associated
with the linear chiral term in the energy. This simple sit-
uation is obtained when one of the 3-fold axes is in the
vorticity direction. We would like to emphasize that this
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Fig. A.1. Model of a symmetrically chiralized bent-core
molecule (left) with its mirror image (right); filled (orange)
circles mean e.g. positive chirality, while the (orange) stars in-
dicate negative chirality.

type of flow alignment is difficult to detect optically due
to the high symmetry of the system in the shear plane. In
the Td phase this type of flow alignment is not possible
because of its higher symmetry.

Acknowledgment - Early versions of Figs. 1 and A.2 by
P.E. Cladis [28] served as inspirations for the plots pre-
sented here.

Appendices

Appendix A.1: The chiral tetrahedral T phase

In the main body of this manuscript we have dealt with
achiral molecules. Nevertheless, due to the low symmetry
of e.g. the D2 phase, there is structural (ambidextrous)
chirality. In this Appendix we assume chiral molecules
and elucidate the relation between chirality due to chi-
ral molecules and structural chirality found for achiral
molecules. There are certainly many ways of chiralizing
bent-core molecules, but for our purposes it is convenient
to assume that the two tails of such molecules are sym-
metrically chiralized, Fig. A.1 (left). If such a molecules is
mirrored at a plane or inverted, the chirality is changed,
Fig. A.1 (right), and the two forms cannot be brought into
coincidence by mere rotations.

To get the symmetry of the phase made of such
molecules, one has to employ a specific model. Assum-
ing that two bent-core molecules of the same chirality are
combined in a steric arrangement similar to the tetrahe-
dral vectors 1-4 and 2-3, Fig. A.2, a T -symmetric phase
(T phase) is obtained [4]. Due to the chirality of the
molecules, the 4̄ axes of the Td phase are reduced to
(proper) 2-fold symmetry axes, and the planes spanned

Fig. A.2. Model of two bent-core molecules (1-4 and 2-3) with
the same chirality, arranged to fit into the tetrahedral geome-
try (left) with its mirror image (right); not only is the tetra-
hedral geometry inverted, but also the molecular chirality has
changed.

Fig. A.3. Projection of the tetrahedral structure of Fig. A.2
onto the x/y plane. The z axis is reduced to a 2-fold axis,
since a π/4 rotation with an additional inversion preserves the
structure, but changes the chirality. For the same reason, the
planes spanned by vectors 1/4 or 2/3 are no mirror planes.

by vectors 1/4 and 2/3 are no longer mirror planes, Fig.
A.3, with the result that only three 2-fold and four 3-
fold symmetry axes exist. The former are the x, y, z direc-
tions, while the latter are the tetrahedral axes 1-4, which
are equivalent despite the chirality. Such an arrangement
of bent-core molecules ensures the compensation of the
molecular polarity and results in the T phase being non-
polar. This T phase made of chiral molecules is related to
the achiral Td phase in the same spirit as a chiral smectic
C∗ phase is related to an achiral smectic C phase.

The hydrodynamics of the achiral Td phase has been
given in Ref. [14] and is also briefly mentioned in Sec.
2.1. We therefore concentrate on the differences between
the hydrodynamics of the T compared to the Td phase.
Those differences are solely due to the chirality of the for-
mer. Describing the rotations of the tetrahedral structure
by δΓi ≡ 1

4αεipqTpkl δTqkl with a proper norm α, the rota-
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tional elastic free energy

εg =
1

2
KT
ijkl(∇jΓi)(∇lΓk) + q0K

lin
1 ∇iΓi (A.1)

contains three quadratic achiral contributions KT
ijkl =

KT
1 (δijδkl+δilδjk)+KT

2 δikδjl+K
T
3 TjlpTikp and one linear

chiral term ∼ q0Klin
1 . Generally, a linear gradient term fa-

vors a spatially inhomogeneous structure. In the present
case, a helical rotation of Tijk about any of the 3-fold axes
(the tetragonal vectors) reduces the free energy by ∆ε =
− 1

2 (q0K
lin
1 )2/(2KT

1 +KT
2 ). What looks like a linear splay

term is physically a linear twist contribution, quite sim-
ilar to the familiar case of chiral nematics (cholesterics).
The optimum helical pitch, qh = 3

2q0K
lin
1 /(2KT

1 + KT
2 ),

is generally different from the chiral pseudoscalar of the
phase, q0, since there is no a priori reason that Klin

1 is re-
lated to KT

1,2. An analogous statement holds for ordinary
cholesterics [29]. Helical rotations about the 2-fold axes do
not lower the free energy, since the linear gradient term is
zero in that case and the quadratic term, ∼ K3, increases
the free energy.

The similarity to the cholesteric phase also holds for
chiral Lehmann-type contributions, both static in the free
energy, εc = q0(ξρδρ + ξσδσ + ξcδc)∇iΓi, and dynamic
in the dissipation function, R = q0(ΨEEk + ΨT∇kT +
Ψ c∇kc)∇ihΓi . They relate the scalar degrees of freedom
(temperature, concentration, density etc.) with the rota-
tions of the tetrahedron.

The dynamics of the rotations, Γ̇i +Y Γi = 0, contains,
as in the Td phase, the (reversible) advective and con-
vective parts and an dissipative isotropic relaxation [14],
but in addition a chiral, reversible coupling to the rate of
strain tensor

Y Γi = q0λTijkAjk. (A.2)

This coupling to both, rotational and symmetric shear
flows, allows for a stationary alignment of Tijk in sim-
ple shear that is independent of the flow rate and only
depends on q0λ. In particular, if one of the 3-fold tetra-
hedral axis is in the vorticity direction, the tetrahedron is
rotated about this direction by an angle θ, Fig. A.4, given
by

1

cos 2θ
=

16

27
q0λ (A.3)

This alignment by shear flow resembles very much the
flow alignment in nematics, although there it is an achiral
effect. On the other hand, however, it might be difficult
to orient the T phase properly and to detect its rotation
under shear. There is no flow alignment of a 2-fold axis
by shear, since there is no stationary homogeneous solu-
tion possible for that geometry. It is rather remarkable
that chiralization allows the tetrahedral vectors to act as
preferred directions (albeit all equivalently), e.g. as helical
axis or as rotation axis in flow alignment. In the achiral
phase the tetrahedral vectors are only preferred directions,
when an electric field is applied.

The remainder of the dynamics is as in the achiral Td
phase: 2-rank material tensors (e.g. heat conduction, dif-
fusion, electric conductivity) are isotropic leaving the sys-
tem optically isotropic, while the viscosity tensor contains

Fig. A.4. Projection of the tetrahedral structure onto the x/y
plane with one of the tetrahedral axes (n1) along the z-axis
(corners 2,3,4 lie below the x/y plane). This is also the vortic-
ity direction of the simple shear ∇yvx = S. The structure is
rotated in the shear plane by an angle θ that is independent of
the shear rate S.

three independent viscosities in accordance with the cubic
symmetry class. There is also the reversible crosscoupling
between flow and the currents of heat, concentration and
charge and their reverse effects, stresses due to tempera-
ture or concentration currents or electric fields [8], which
is possible by the broken inversion symmetry of Tijk.

Appendix A.2: The D2′ and D2′′ phases

One can further reduce the symmetry of the T phase by
adding a uniaxial nematic director along one of the 2-fold
symmetry axis (e.g. the z axis). This removes all 3-fold
axes and a D2-symmetric phase (D2′) with only three
mutually orthogonal 2-fold axes, is obtained. The same
effect can be obtained, when the tetrahedron formed by
the vectors 1-4 is stretched or dilated uniaxially along a
2-fold axis. This D2′ phase has the same symmetry as the
D2 phase described in Sec. 2.2, but differs in the origin
of the chirality. In the D2′ phase there is a definite hand-
edness coming from the chiral molecules (denoted by the
pseudoscalar q′0), while the D2 phase chirality is structural
and both types of handedness are possible (q0 and −q0 of
Eq. (2)). Adding orthorhombic biaxial nematic directors
to the T phase (with the directors along the 2-fold axes)
does not change the symmetry. This D2′′ phase, however,
shows both, ambidextrous chirality of D2 and the definite
chirality of the T phase.
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