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We present a method to find the adjoint system of equations and the corresponding boundary conditions for
free deformable surfaces. Motivated by the nonlinear discussion of the Rosensweig instability in ferrogels
using the energy method, we treat the surface as dynamic and take the stationary limit only in the very end.
We analyze the adjoint system of dynamic equations together with its corresponding boundary conditions and
present as a solution the adjoint eigenvectors for the Rosensweig instability. The method is also applied to
pure surface tension driven convection (Marangoni convection). c© 2007 American Institute of Physics. [DOI:
10.1063/1.2757709]

I. INTRODUCTION

One prominent example of a surface phenomenon is the
normal-field or Rosensweig instability in magnetic fluids1.
Magnetic fluids are colloidal suspensions of ferromagnetic
nanoparticles in a carrier liquid2. If an external magnetic field,
applied perpendicularly to the free surface of a magnetic fluid,
exceeds a certain critical value, the initially flat surface be-
comes unstable in favor of a stationary pattern of hexagonal
surface spikes in two dimensions. The same kind of instability
occurs, when the properties of a magnetic fluid are combined
with those of a polymeric gel to form a ferrogel. However, the
critical magnetization of the ferrogel is enhanced by the shear
modulus of the elastic network3.

In the case of usual ferrofluids, the instability has been
carefully studied experimentally4, a satisfying theoretical
description in terms of a multiple scale analysis as done
for the Rayleigh-Bénard instability5 is, however, not yet
available. Early weakly nonlinear discussions6,7 used an
energy minimizing method, that was valid only in the case
of a vanishing magnetic susceptibility. Later on this method
was extended to magnetic fluids with a finite but still small
magnetic susceptibility8 and to magnetic gels9. Nevertheless,
this method, as well as the functional analysis method used
by Twombly and Thomas10 and Silber and Knobloch11, is
only valid in the static regime and gives no information
about the growth of the surface perturbations towards a
final static pattern and furthermore neglect any dissipative
processes that might be of importance during the growth of
surface spikes. The dynamics of walls between hexagonal
and square patterns has been analyzed first in Refs. 12, 13
using a Swift-Hohenberg equation. However, a multiple scale
analysis based on the fundamental hydrodynamic equations is
still missing. Malik and Singh14,15 applied an ε−expansion to
the hydrodynamic equations, where ε denotes the difference
between the actual applied magnetic field and the critical one.
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They circumvented Fredholm’s theorem and, even more im-
portantly, they restricted the discussion to potential flows only.
Lange16 first mentioned that the adjoint system of the lin-
ear fundamental equations and especially the corresponding
boundary conditions required to use Fredholm’s theorem is
still missing in the case of the Rosensweig instability. How-
ever, the use of a scalar product, introduced for the Marangoni
instability17 provided the free surface is undeformable, did not
yield the adjoint system.

The Marangoni instability is another prominent example of
a surface tension driven instability. If a temperature gradi-
ent is applied to a layer of a fluid with a free surface, the
conducting state becomes unstable beyond a certain critical
temperature gradient when heating is done from below and
convection starts. For thick layers the instability is driven by
buoyancy (classical Rayleigh-Bénard convection), but if the
layer is smaller than about 1mm, Pearson18 proposed fluctua-
tions of the surface tension, due to temperature fluctuations at
the free surface, being the mechanism driving the convection.

This instability was investigated extensively theoretically.
Nield19 first compared linearly the competition between the
buoyancy and the surface tension driven instability, but both,
Pearson and Nield, still considered a flat, undeformable sur-
face. Scriven and Sternling20 and later on Smith21 accounted
for a free deformable surface. In Ref. 20 capillary effects
have been considered, but an always unstable conducting
regime was obtained due to missing gravitational contribu-
tions. Smith discussed a layer model, a light fluid above a
heavier one. But a comprehensive linear study was first given
by Takashima22,23, who also discussed the possibility of an os-
cillatory branch that could arise for negative Marangoni num-
bers. Pérez-Garcı́a and Carneiro24 generalized this approach
to the combination of both, surface driven and bouyancy
driven convection, which matches the results of Takashima
in the limit of negligible buoyancy forces. This nonlinear the-
oretical discussion assumed a flat, undeformable surface as
did all the other approaches. For example, Rosenblat et al.
discussed the nonlinear regime in a cylindrical container25 in
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terms of an extended Galerkin method where no adjoint sys-
tem was used. This discussion was later on extended to rect-
angular vessels26,27. The case of a horizontally infinite layer
of fluid was studied in Refs. 17, 28. In Ref. 29 a two layer
model was considered, where the adjoint system was derived
using the ansatz of17 provided the surface is flat. An adjoint
system, based on the fact that the surface is deformable, is
therefore also in the case of the Bénard-Marangoni instability
highly desirable.

In this work we present a method to find the adjoint operator
and its corresponding adjoint boundary conditions taking into
account the deformations of a free surface. First we discuss
the case of a magnetic gel in an external magnetic field. Later
on we will apply that method to the case of Bénard-Marangoni
convection in usual fluids.

II. SURFACE WAVES

The general idea of our approach is to treat the surface as
dynamic with surface waves propagating on the free surface,
as long as the magnetic field – or the temperature gradient
in the case of convection – is below its critical value. We
can distinguish the limiting cases of capillary waves for very
short wavelengths, gravitational waves for rather long wave-
lengths and Rayleigh elastic waves in the intermediate regime
and only in the case of gels. Furthermore, below the critical
point of the instability, all of these waves are damped, but get
excited again by thermal agitation. When reaching the critical
value of the control parameter, the damping of one charac-
teristic mode becomes weak and finally vanishes exactly at
the critical point. In the stationary case this coincides with
the slowing down of this particular mode, so that the initially
traveling waves transform into a static pattern. This process
can be seen by inspection of the dispersion relation, e.g. in
Ref. 2 in case of pure ferrofluids.

As a consequence of this, we assume the entire linear prob-
lem to be time dependent from the beginning. Only in the
end of the discussion we will, based on the discussion of the
dispersion relation, take the stationary limit of the system.

III. BASIC EQUATIONS AND GROUND STATE

The dynamic equations have already been given in our lin-
ear discussion of the Rosensweig instability. They have been
derived for the general case by Jarkova et al.30 and are re-
peated here using some approximations discussed below

∂tgi + ∂jTij = ρGi (1)(
∂t + vk∂k

)
εij −

1
2
(
∂ivj + ∂jvi

)
= 0 (2)

∂tρ + ∂k(ρvk) = 0 (3)

The equations describe the conservation of linear momentum
g = ρv (1) and of mass ρ (3), whereas eq. (2) accounts for
the dynamic strain field which is related to the broken trans-
lational symmetry of the system. An index i denotes the ith
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FIG. 1: Qualitative sketch of the geometry under consideration. The
magnetic medium is occupying the negative half-space. The deflec-
tion of the deformable surface with respect to the flat surface at z = 0
is denoted by ξ with its unit normal vector n pointing upwards. The
applied magnetic field is always parallel to the z−axis, while the
acceleration due to gravity G is acting in the opposite direction.

component of a vector with the sum convention applied to re-
peated indices. Here ∂t and ∂i are partial derivatives with
respect to time and space, respectively.

In our notation v is the velocity, p the pressure, G repre-
sents the acceleration due to gravity, B and H are the mag-
netic induction and the magnetic field, respectively, and the
symmetric second rank tensors Tij and εij denote the stress
tensor and the strain field, respectively. We do not make at this
stage the incompressibility approximation in order to maintain
the symmetric structure of the Navier-Stokes equation which
turns out to be necessary for the adjoining process. Only at
the end we will simplify the formulas by assuming incom-
pressibility.

The underlying assumptions are as follows. Even though
the magnetic field is considered a slowly relaxing variable in
the hydrodynamic theory of Jarkova et al., we assume that it
relaxes fast enough on the time scale considered in our dis-
cussion for the Rosensweig instability. This is justified by the
fact, that the growth of surface spikes takes place on a time
scale long compared to the temporal variations of the mag-
netic field. The magnetic field is then defined by the static
Maxwell equations and the corresponding boundary condi-
tions at the surface. We also assume, that the macroscopic
material parameters like the shear modulus and the shear vis-
cosity are independent of the magnetization in the medium.
This also implies that we will neglect magnetostriction in our
discussions.

As long as we consider the medium as compressible, we
need an equation of state. Due to the assumption, that no
magnetostrictive effects are important in our discussion, this
equation of state can be assumed to be the barotropic equation

δp = c2δρ (4)

with the speed of sound c. As Jarkova et al. stated in30,
the modification of the speed of sound and especially the
anisotropy effect in presence of an external magnetic field is
proportional to the magnetostrictive constants and therefore of
no importance in our discussion.

The stress tensor of the medium is defined via the conserva-
tion equation for the momentum density (1) and given in our
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notation by

Tij = givj + pδij −
(
BiHj −

1
2
BkHk δij

)
−µ2(εjkεki + εikεkj)− µ̂εkkεij − 2µ2εij

−µ̂δijεkk − ν2(∂jvi + ∂ivj)− ν̂δij∂kvk (5)

with the abbreviations µ̂ = µ1 − 2/3 µ2 and ν̂ = ν1 − 2/3 ν2

for the contributions vanishing in the limit of incompressibil-
ity, while the material parameters µ2 and ν2 stand for the shear
elasticity and shear viscosity respectively. The compressional
elasticity µ1 and viscosity ν1 are hidden in the abbreviations
µ̂ and ν̂.

We consider the case of an infinitelly extended surface, ini-
tially situated at z = 0. For convenience the magnetic medium
is filling the negative half-space whereas the vaccum is as-
sumed to occupy the positive one; the gravitational force is
assumed to point downwards. The applied magnetic field is
oriented parallel to the z−axis (cf. Fig. 1).

To find the adjoint system of equations with its correspond-
ing boundary conditions to the linear problem, we linearize
Eqs. (1) to (3) with respect to the initially flat surface.

{ρ, p,B,H,M} = {ρ0, p0,B0,H0,M0}
+{ρ(1), p(1),B(1),H(1),M(1)} (6)

{v, εij , ξ} = 0 + {v(1), ε
(1)
ij , ξ(1)} (7)

We will drop, however, the superscript (1) in the following
calculation. In our notation ξ describes the deflection of the
surface from its initially flat state (cf. Fig. 1). The observables
p0, ρ0, B0, H0 and M0 are, respectively, the pressure, the
density, the magnetic flux density, the magnetic field and the
magnetization in the basic state where the surface is flat. They
are related by the hydrostatic pressure relation.

IV. THE LINEAR EQUATIONS AND THE ADJOINT
SYSTEM

When writing down the system of equations in linear order,
we recall the fact already stated in3 that the magnetic contri-
butions cancel in the dynamic equations within the scope of
the considered assumptions:

ρ0∂tvi + ∂ip− ν̂∂i∂kvk − ν2∂j(∂ivj + ∂jvi)
−µ̂∂iεkk − 2µ2∂jεij = 0 (8)

∂tεij −
1
2
(∂ivj + ∂jvi) = 0 (9)

∂tρ + ρ0∂ivi = 0 (10)

The corresponding boundary conditions using the stress bal-
ance at the surface read in linear order

µ2εxz + ν2(∂zvx + ∂xvz) = 0 (11)
µ2εyz + ν2(∂zvy + ∂yvz) = 0 (12)

p− 2µ2εzz − 2ν2∂zvz − µ̂εii − ν̂∂ivi

−Gρ0ξ +
µ0

1 + µ0/µ
M2

0 kξ − σk2ξ = 0 (13)

while for a free deformable surface we additionally have to
fulfill the kinematic boundary condition

vz = ∂tξ (14)

As stated already in Sec. II, the surface is subject to thermal
fluctuations that we will expand in terms of plane waves with
frequency ω and wave vector k, ξ = ξ̂eiωt−ik·r.

The system of dynamic equations in the medium can be
written in terms of an eleven dimensional state vector, that we
will define in the following way

Φ =
(
vx, vy, vz, p, εxx, εyy, εzz, εxy, εxz, εyz, ρ

)
(15)

We will skip the discussion of the magnetic part of the system
of equations. This part completely decouples from the dy-
namic part of the medium as stated above and reduces within
our assumptions to the Laplace equation for the magnetic po-
tential. The Laplace equation is self-adjoint and a homoge-
nous equation. Therefore Fredholm’s alternative is satisfied
automatically.

Using the definition given above we can write the system of
linear equations (8) to (9) together with the equation of state
of the medium (4) in the following form, which can be taken
to be the definition for the linear operator L0.

L0Φ = 0 (16)

To find the adjoint operator L†0, and especially the adjoint
boundary conditions, we use the following identity with Φ̄ de-
noting the adjoint state

〈Φ̄ | L0Φ〉 = 〈L†0Φ̄ | Φ〉 (17)

The left hand side of this equation corresponds to the follow-
ing integral using the standard scalar product, which we have
to integrate by parts,
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lim
L→∞

1
4L2

L∫
−L

dx

L∫
−L

dy

ξ∫
−∞

dz

t∫
0

dt
{

v̄x

{(
ρ∂t − ν2∂

2
i − (ν̂ + ν)∂2

x

)
vx − ν̂∂x∂yvy − ν2∂y∂xvy − ν̂∂x∂zvz − ν2∂z∂xvz

+∂xp− 2µ2∂xεxx − µ̂∂xεxx − µ̂∂xεyy − µ̂∂xεzz − 2µ2∂yεxy − 2µ2∂zεxz

}
+v̄y

{
− ν̂∂z∂xvx − ν2∂x∂zvx +

(
ρ∂t − ν2∂

2
i − (ν̂ + ν)∂2

y

)
vy − ν̂∂y∂zvz − ν2∂z∂yvz

+∂yp− µ̂∂yεxx − 2µ2∂yεyy − µ̂∂yεyy − µ̂∂yεzz − 2µ2∂xεxy − 2µ2∂zεyz

}
+v̄z

{
− ν̂∂z∂xvx − ν2∂x∂zvx − ν̂∂z∂yvy − ν2∂y∂zvy +

(
ρ∂t − ν2∂

2
i − (ν̂ + ν)∂2

z

)
vz

+∂zp− µ̂∂zεxx − µ̂∂zεyy − 2µ2∂zεzz − µ̂∂zεzz − 2µ2∂xεxz − 2µ2∂yεyz

}
+ p̄
{

∂xvx + ∂yvy + ∂zvz +
∂tρ

ρ0

}
+ε̄xx

{
− ∂xvx + ∂tεxx

}
+ ε̄yy

{
− ∂yvy + ∂tεyy

}
+ ε̄zz

{
− ∂zvz + ∂tεzz

}
+ ε̄xy

{
− ∂y

2
vx −

∂x

2
vy + ∂tεxy

}
+ε̄xz

{
− ∂z

2
vx −

∂x

2
vz + ∂tεxz

}
+ ε̄yz

{
− ∂z

2
vy −

∂y

2
vz + ∂tεyz

}
+ ρ̄
{∂tp

ρ0
− c2 ∂tρ

ρ0

}}
(18)

This leads to the adjoint linear operator L†0 =
(

A C
B D

)
with the abbreviations (19)

A =


−ρ∂t − ν2∂

2
i − (ν̂ + ν2)∂2

x −ν̂∂x∂y − ν2∂y∂x −ν̂∂x∂z − ν2∂z∂x −∂x + 1
ρ0

(∂xρ0)

−ν̂∂y∂x − ν2∂x∂y −ρ∂t − ν2∂
2
i − (ν̂ + ν2)∂2

y −ν̂∂y∂z − ν2∂z∂y −∂y + 1
ρ0

(∂yρ0)

−ν̂∂z∂x − ν2∂x∂z −ν̂∂z∂y − ν2∂y∂z −ρ∂t − ν2∂
2
i − (ν̂ + ν2)∂2

z −∂z + 1
ρ0

(∂zρ0)

−∂x −∂y −∂z 0

 (20)

B =



2µ2∂x + µ̂∂x µ̂∂y µ̂∂z 0

µ̂∂x 2µ2∂y + µ̂∂y µ̂∂z 0

µ̂∂x µ̂∂y 2µ2∂z + µ̂∂z 0

2µ2∂y 2µ2∂x 0 0

2µ2∂z 0 2µ2∂x 0

0 2µ2∂z 2µ2∂y 0

0 0 0 − 1
ρ0

∂t


(21)

C =


∂x 0 0 1

2∂y
1
2∂z 0 0

0 ∂y 0 1
2∂x 0 1

2∂y 0

0 0 ∂z 0 1
2∂x

1
2∂y 0

0 0 0 0 0 0 − 1
ρ0

∂t

 (22)

D = −



∂t 0 0 0 0 0 0

0 ∂t 0 0 0 0 0

0 0 ∂t 0 0 0 0

0 0 0 ∂t 0 0 0

0 0 0 0 ∂t 0 0

0 0 0 0 0 ∂t 0

0 0 0 0 0 0 c2

ρ0
∂t


(23)

While integrating eq. (18) by parts, one also obtains sur-
face contributions, which have to vanish to fulfill eq. (17).
The most important parts are the contributions due to the
z−integration. At the bottom (z = −∞) they are always
0, since the eigenvectors of the linear system exponentially
decay with increasing depth. The condition, that they should
also vanish at the surface, defines the adjoint boundary condi-
tions at the free surface. At this point we can just state that the
following sum should vanish

v̄x(−ν2∂zvx − ν2∂xvz − µ2εxz) + vx(ν2∂z v̄x + ν2∂xv̄z

− 1
2 ε̄xz) + v̄y(−ν2∂zvy − ν2∂yvz − µ2εyz) + vy(ν2∂z v̄y

+ν2∂y v̄z − 1
2 ε̄yz) + v̄z(−ν̂∂ivi − 2ν2∂zvz − µ̂εii + p

−2µ2εzz) + vz(ν̂∂iv̄i + 2ν2∂z v̄z + p̄− ε̄zz) = 0 (24)
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Using the two tangential boundary conditions of the original
system (11,12) those contributions in (24) vanish that are pro-
portional to v̄x or v̄y . Using the normal stress boundary con-
dition (13) in the second last term of (24), we implement the
gravitational, the surface tension and the magnetic contribu-
tions into the adjoint boundary conditions. This also ensures
the presence of the driving force in the boundary conditions of
the adjoint system. With the help of the kinematic boundary
condition in the original case (14), which reduces to vz = iωξ,
we can then substitute vz ending up with the necessary condi-
tion at the surface

vx(ν2∂z v̄x + ν2∂xv̄z −
1
2
ε̄xz) + vy(ν2∂z v̄y + ν2∂y v̄z

−1
2
ε̄yz) + ξ

(
Gρ0v̄z −

µ0M
2
0

1 + µ0/µ
kv̄z + σk2v̄z + iωp̄

+iων̂∂iv̄i + 2iων2∂z v̄z − iωε̄zz

)
= 0 (25)

We can split this condition into three separate parts. This
choice is suggested by the fact, that within the scalar prod-
uct we used, the velocities vx and vy are independent com-
ponents. We therefore find as boundary conditions at the free
surface in the adjoint case

ν2∂z v̄x + ν2∂xv̄z − 1/2 ε̄xz = 0 (26)
ν2∂z v̄y + ν2∂y v̄z − 1/2 ε̄yz = 0 (27)

Gρ0v̄z −
µ0M

2
0

1 + µ0/µ
kv̄z + σk2v̄z + iωp̄

+iων̂∂kv̄k + 2iων2∂z v̄z − iωε̄zz = 0 (28)

The horizontal boundary conditions originating from the hor-
izontal integrations are satisfied automatically, since we take
the limit of an infinitely extended layer. The only additional
condition we get is due to the time integration, but this is not
important in the limit of a stationary instability we will dis-
cuss in the following, but it should be taken into account if
one handles oscillatory instabilities, e.g. the Faraday instabil-
ity.

At this point we restrict our calculations to an incompress-
ible medium assuming ∂iv̄i = 0 = ε̄ii. The adjoint system of
equations, L†0Φ̄ = 0, then reads

−ρ∂tv̄i − ∂ip̄− ν2∂j∂j v̄i +
1
2
(∂iε̄ii + ∂jεij) = 0 (29)

−∂tε̄ij + 2µ2(∂iv̄j + ∂j v̄i)(1−
1
2
δij) = 0 (30)

∂iv̄i = 0 (31)

where underlined indices are not summed upon. Their struc-
ture is similar to those of the original equations.

Following the same approach as for the original linear sys-
tem, namely using the dynamic equations for the strain field
in the momentum conservation equation, we get as a first step

ρ0ω̄
2v̄i − iω̄∂ip̄ + µ(ω̄)∂j

(
∂j v̄i + ∂iv̄j

)
= 0 (32)

∂iv̄i = 0 (33)

where we used the abbreviation µ(ω̄) = µ2 − iω̄ν2. We will
separate the velocity field into two parts. One due to poten-
tial flow and the second due to vorticity flow. Fulfilling the
dynamic bulk equations, we obtain the inverse decay length
q̄2 = k2 − ρω̄2/µ(ω̄) for the vorticity flow with respect to
the z−axis. The solvability condition for the adjoint bound-
ary conditions then leads to the dispersion relation for surface
waves in the adjoint system.

ω̄2ρ
(
2k2µ(ω̄)− ω̄2ρ

)
+ω̄2ρ

[
− ω̄

ω

(
Gρ− µ0M

2
0

1 + µ0/µ
k + σk2

)
k + 2µ(ω̄)k2

]

−(2k2µ(ω̄))2
(

1−

√
1− ω̄2ρ

µ(ω̄)k2

)
= 0 (34)

Eq. (34) reduces to the original dispersion relation3 if
ω̄ = −ω. This is the physical solution, since the adjoint space
acquires an easy and obvious physical interpretation: Consid-
ering the surface in its general form with left and right trav-
eling waves and the corresponding adjoint surface deflection
using the solution given above

ξ = ξ̂Reiωt−ik·r + ξ̂Le−iωt−ik·r + c.c. (35)

ξ̄ ≡ ¯̂
ξReiω̄t−ik·r + ¯̂

ξLe−iω̄t−ik·r + c.c.

= ¯̂
ξRe−iωt−ik·r + ¯̂

ξLeiωt−ik·r + c.c. (36)

(c.c. is the complex conjugate) we recognize by comparing
equations (35) and (36), that a right traveling wave transforms
into a left traveling wave in the adjoint system and vice versa,
leading to the conditions:

¯̂
ξR = ξ̂L and ¯̂

ξL = ξ̂R (37)

V. ADJOINT EIGENVECTORS FOR THE ROSENSWEIG
INSTABILITY

Up to now all calculations have been performed without
giving an explicit expression for the kinematic boundary con-
dition at the surface in the adjoint system. To calculate the
adjoint eigenvectors we have to specify that condition. How-
ever, it cannot be obtained by integrating by parts, since it is
of a completely different type compared to the boundary con-
ditions (11) to (13). While the former ones are derived using
the stress balance at the surface, the kinematic boundary con-
dition is phenomenological in nature. For surface waves in
the adjoint space we therefore require a kinematic boundary
condition of exactly the same structure as in the original case.

vz(ω) = ∂tξ(ω) = iωξ(ω) (38)
v̄z(ω̄) = ∂tξ̄(ω̄) = iω̄ξ̄(ω̄) (39)

Following the same way to calculate the eigenvectors as in
the case of the original system9, we get for the amplitudes of
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the vorticity flow potential (recall q̄2 = k2−ρω̄2/(µ2−iω̄ν2))

¯̂Ψx = iky
2k

q̄2 + k2
¯̂ϕ (40)

¯̂Ψy = −ikx
2k

q̄2 + k2
¯̂ϕ (41)

and of the scalar potential

¯̂ϕ = iω̄
q̄2 + k2

k(q̄2 − k2)
(42)

where Ψ̄i denote the components of the vector potential of the
velocity defined by the rotational part of flow v̄rot = ∇ ×
Ψ̄. The scalar potential ϕ̄ is connected to the potential flow
v̄pot = ∇ϕ̄.

The components of the adjoint velocities then become sim-
ilar to the ones known from the original system, and – as in
the original system – they vanish in the case of a stationary
instability

v̄x = ω̄
kx

k

(
ekz − 2q̄k

q̄2 + k2
eq̄z
) q̄2 + k2

q̄2 − k2
ξ̄ (43)

v̄y = ω̄
ky

k

(
ekz − 2q̄k

q̄2 + k2
eq̄z
) q̄2 + k2

q̄2 − k2
ξ̄ (44)

v̄z = iω̄
(
ekz − 2k2

q̄2 + k2
eq̄z
) q̄2 + k2

q̄2 − k2
ξ̄ (45)

For the adjoint strain field we get

ε̄zz = 2µ2k
(
ekz − 2q̄k

q̄2 + k2
eq̄z
) q̄2 + k2

q̄2 − k2
ξ̄ (46)

ε̄xx = 2µ2
k2

x

k

(
ekz − 2q̄k

q̄2 + k2
eq̄z
) q̄2 + k2

q̄2 − k2
ξ̄ (47)

ε̄yy = 2µ2

k2
y

k

(
ekz − 2q̄k

q̄2 + k2
eq̄z
) q̄2 + k2

q̄2 − k2
ξ̄ (48)

ε̄xy = −4µ2
kxky

k

(
ekz − 2q̄k

q̄2 + k2
eq̄z
) q̄2 + k2

q̄2 − k2
ξ̄ (49)

ε̄xz = −4iµ2kx

(
ekz − eq̄z

) q̄2 + k2

q̄2 − k2
ξ̄ (50)

ε̄yz = −4iµ2ky

(
ekz − eq̄z

) q̄2 + k2

q̄2 − k2
ξ̄ (51)

Obviously the adjoint strain components have the same struc-
ture as the components in the original case and they also show
a finite stationary limit. However, they do not have the same
units. While the strain field in the original case is dimension-
less, the adjoint strain field is proportional to the shear modu-
lus µ2. This is consistent with the scalar product (18), where
all contributions need to have the same dimension. One could
avoid the dimension of the adjoint strain field by defining a
scalar product with a metric containing units in the fifth to the
tenth component.

The reasons why previous attempts to solve the adjoint
problem have failed are, in our opinion, twofold. One crucial
part in our discussion is to treat the medium as compressible.

z

n

x, y

z = 0

z = d
ξ

∇T

G

FIG. 2: Qualitative sketch of the geometry under consideration in the
case of pure Marangoni convection. The fluid is confined between
the rigid surface at z = 0 and the deformable surface initially at
z = d. The deflection of the deformable surface with respect to the
flat surface is denoted by ξ with its unit normal vector n pointing
upwards. The applied temperature gradient is always parallel, the
acceleration due to gravity G always antiparallel to the z axis.

This ensures e.g. the presence of the contribution ∼ ∂j∂ivj

in the Navier-Stokes equation. During the process of adjoin-
ing, commutativity of gradients in this term requires that the
surface terms ∼ v̄i∂ivj and ∼ v̄j∂ivi are equivalent, which
would be violated if incompressibility is applied before. The
assumption of an incompressible fluid is therefore too strong
a restriction. An even more important point is to treat the sys-
tem as a dynamic one. The subtle reason for that is manifest
in the dynamic boundary condition of the surface deflection.
Assuming stationarity from the beginning would imply an al-
ways undeformed surface because the vertical velocity at the
surface would vanish in any case. However, this velocity com-
ponent needs to be finite to allow the surface to deform. The
marginal point where the spikes are about to develop (or the
final point where the spikes have fully developed) are then ob-
tained as the static limit ω → 0 of the full dynamic behavior.

VI. THE ADJOINT PROBLEM FOR THE MARANGONI
INSTABILITY

Inspired by the result in the case of the Rosensweig insta-
bility, we apply the same formalism to the case of stationary
Marangoni convection to find the adjoint system of equations
for this case as well. However, there exists a crucial difference
between these two instabilities. While in the case of magnetic
fluids the external force acts normal to the free surface, in the
case of Marangoni convection the external force is acting tan-
gential to the surface (see Fig. 2). This external force for the
Marangoni instability is mediated by temperature fluctuations.
The surface tension σ is therefore assumed to be temperature
dependent and reads in a series expansion up to linear order in
T

σ(T ) = σ(TR)− γ(T − TR) (52)

with the change in surface tension due to temperature fluctu-
ations γ = −(∂σ(T )/∂T )T=TR

and where TR represents an
arbitrary reference temperature. For the following discussion
we will refer to σ(TR) as σ.
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A. Basic equations and the adjoint system

To find the adjoint system for the purely surface driven con-
vection, the Marangoni instability, we assume a viscous New-
tonian fluid. As done in the case of the Rosensweig instability,
we assume it to be compressible with a barotropic equation of
state at the beginning, but in the end we will again use the limit
of an incompressible fluid. Additionally we have to incorpo-
rate the equation of heat transport with the temperature T and
the thermal diffusivity χ. All the other variables are denoted
in the same way as in the previous discussion. As we want to
discuss the purely surface driven contribution of convection,
all contributions due to buoyancy are neglected. The system
of equations thus reads

∂tρ + ∂k(ρvk) = 0 (53)
∂tgi + ∂jTij = ρGi (54)
∂tT + vj∂jT = χ∂j∂jT (55)

The stress tensor Tij of the fluid under consideration takes the
form

Tij = vjgi + pδij − ν2(∂jvi + ∂ivj)− ν̂(∂kvk)δij (56)

We require the normal as well as the tangential stress at the
free surface between the Newtonian fluid and the vacuum to
be balanced, leading to the normal and tangential boundary
conditions, respectively

p− ρ0Gξ − 2ν2∂zvz − ν̂(∂kvk) = −σ(∂2
x + ∂2

y)ξ (57)
ν2(∂yvz + ∂zvy) = −γ∂yT + γβ∂yξ (58)
ν2(∂xvz + ∂zvx) = −γ∂xT + γβ∂xξ (59)

where β denotes the applied temperature gradient across the
fluid. Additionally we have to specify the phenomenologi-
cal boundary conditions at the surface. Again the kinematic
boundary condition (14) for a free deformable surface is as-
sumed to hold. Second, we assume the heat flux Q through
the surface to be proportional to the local temperature gradi-
ent, where κ denotes the coefficient of (surface) heat conduc-
tion.

Q(T ) = −κ∂zT (60)

At the bottom (z = 0) of the container we assume the usual
rigid boundary conditions

vi = ∂zvz = T = 0 (61)

The state vector now becomes six dimensional and is de-
fined by

Φ = (vx, vy, vz, p, T, ρ) (62)

so that the system of equations reads again in the general form

L0Φ = 0 (63)
We use the usual scalar product, however, now the z−inte-
gration is bounded between the bottom plate (z = 0) and the
free surface (z = ξ).

〈Φ̄ | Φ〉 = lim
L→∞

1
4L

L∫
−L

dx

L∫
−L

dy

ξ∫
0

dz

t∫
0

dt Φ̄Φ (64)

The adjoint linear operator then turns out to be



−ρ∂t − ν2∂
2
i − (ν̂ + ν2)∂2

x −ν̂∂x∂y − ν2∂y∂x −ν̂∂x∂z − ν2∂z∂x −∂x 0 0
−ν̂∂y∂x − ν2∂x∂y −ρ∂t − ν2∂

2
i − (ν̂ + ν2)∂2

y −ν̂∂y∂z − ν2∂z∂y −∂y 0 0
−ν̂∂z∂x − ν2∂x∂z −ν̂∂z∂y − ν2∂y∂z −ρ∂t − ν2∂

2
i − (ν̂ + ν2)∂2

z −∂z −β 0
−∂x −∂y −∂z 0 0 − 1

ρ0
∂t

0 0 0 0 −∂t − χ∂2
i 0

0 0 0 − 1
ρ0

∂t 0 − c2

ρ0
∂t



The surface contributions of the integration by parts should
vanish to fulfill eq. (17) leading to the corresponding bound-
ary conditions in the adjoint case.

2iων2∂z v̄z + iων̂(∂kv̄k) + iωp̄ + ρGv̄z + σk2v̄z = 0 (65)

v̄x(−ikx)T̂ (z)− v̄xγβ(−ikx)
+v̂x(z)ν2(∂z v̄x + ∂xv̄z) = 0 (66)

v̄y(−iky)T̂ (z)− v̄yγβ(−iky)
+v̂y(z)ν2(∂z v̄y + ∂y v̄z) = 0 (67)

−χT̄∂zT + χT∂zT̄ = 0 (68)

In the last set of equations we have used the fact, that every

variable of the original system is modulated by ξ, in particular
we used T (z) = T̂ (z)ξ and vx,y(z) = v̂x,y(z)ξ. Actually Eq.
(68) just states, that the adjoint temperature may differ from
the original one by just a constant. For the phenomenological
boundary conditions we take the same form as for the original
case, namely

v̄z = iω̄ξ̄ (69)
Q̄(T̄ ) = −κ ∂zT̄ (70)

The boundary conditions at the rigid bottom turn out to be
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self-adjoint, but are repeated here

v̄i = ∂z v̄z = 0 (71)
T̄ = 0 (72)

B. The dimensionless representation

For the further discussion we give the dimensionless ver-
sion of the problem discussed in the previous section, because
it is common in all the other discussion regarding convection.
Following the usual steps31, the linearized dynamical equa-
tions for the deviations from the conducting state of the tem-
perature θ and the vertical component of the velocity vz read

(D2 − k2)(D2 − k2 − iω)vz(z) = 0 (73)
(D2 − k2 − iωP)θ(z) = −vz(z) (74)

The boundary conditions at the free surface using the stress
balance then read

(D2 + k2)vz(z) = −Mk2

(
θ(z)− 1

P
ξ

)
(75)

CP(iω −D2 + 3k2)Dvz(z) = −(B − k2)k2ξ (76)

And for the phenomenological boundary conditions we gain

vz(z) = iωξ (77)
P(D + F)θ(z) = Fξ (78)

At the bottom, the equations reduce to

vz = Dvz = θ = 0 (79)

While rescaling the variables we have introduced dimension-
less numbers such as the Prandtl number P = ν2/χ, the
Marangoni number M = γβd2/(ρχν2), the Crispation num-
ber C = ρν2χ/(σd), the Bond number B = ρGd2/σ and the
Biot number F = (∂Q/∂T )d/κ as well as the dimensionless
derivative with respect to z, D = d/dz.

Using the same arguments with the adjoint set of equations
we find

(D2 − k2)(D2 − k2 + iω̄)v̄z(z) = −Aθ̄(z) (80)
(D2 − k2 + iω̄P)θ̄(z) = 0 (81)

It is worth mentioning here, that in eq. (80) an additional num-
ber, A = β2d4/(χν2), arises. This is, however, consistent
with condition (68), which allows the temperature in the ad-
joint case to differ from the original temperature by a constant
factor. One could rescale the dimensionless adjoint tempera-
ture by exactly this number A, resulting in a dimensionalized
adjoint temperature. This, however, is not surprising since
also in the discussion of the adjoint system of the Rosensweig
problem, the adjoint strain field acquired a different physical
unit due to the dynamic coupling between velocity field and
the strain field. The adjoint boundary conditions stemming
from the adjoining process turn out to be

−M(Dv̄z(z))k2

(
θ̂ − 1

P

)
= (Dv̂z)(D2+k2)v̄z(z) (82)

CP(ωω̄−iωD2+3iωk2)Dv̄z(z) = −(B−k2)k2v̄z(z)(83)

While the ones describing the free surface are

v̄z(z) = iω̄ξ̄ (84)
P(D + F)θ̄(z) = F ξ̄ (85)

The self-adjoint boundary conditions at the bottom are re-
peated here in dimensionless form

v̄z = Dv̄z = 0 (86)
θ̄ = 0 (87)

In the dimensionless representation we explicitly made use
of the fact that the macroscopic variables are modulated by ξ,
in particular we used Dvz(z) = (Dv̂z(z))ξ and θ(z) = θ̂(z)ξ.

At that point we should mention a crucial point. While the
adjoint boundary conditions in the case of the Rosensweig in-
stability (26)-(28) turned out to be independent of the eigen-
vectors of the original case, the tangential boundary condition
(82) contains the eigenvectors of the original case. By inspec-
tion of the adjoining-process this is due to coupling between
the temperature and the velocity field, even though this cou-
pling does not drive the instability. A similar coupling in the
bulk equations of the Rosensweig case – the magnetic field
to the velocity or the strain field – was missing. As a con-
sequence, the adjoint dispersion relation will also depend on
the original eigenvectors, which is discussed in detail in the
Appendix.

C. The dispersion relation

We start solving the system of equations in the original
case. Previous analytical work accounting for a stationary
instability with finite deformation of the surface always as-
sumed stationary equations from the beginning. However, to
find a connection between the adjoint and original case, we
need the general dispersion relation of surface waves propa-
gating on the free surface.

To solve the dynamical equations (73) and (74) subject to
the boundary conditions (75)-(79) we used an ansatz with hy-
perbolic functions32. In particular we used, after substitution
of eq. (74) into eq. (73), the following solutions

θ(z) =
3∑

i=1

(
Ai cosh(λiz) + Bi sinh(λiz)

)
(88)

vz(z) = −
2∑

i=1

(
λ2

i − k2 − iωP
)

×
(
Ai cosh(λiz) + Bi sinh(λiz)

)
(89)

together with the roots

λ2
1 = k2 (90)

λ2
2 = k2 + iω (91)

λ2
3 = k2 + iωP (92)

The solvability condition of the boundary conditions gives
the corresponding dispersion relation of plane waves traveling
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on the surface of the fluid. However, the dispersion relation
can only be given implicitly and is shown in the Appendix

D(ω, k,M) = 0 (93)

We will restrict ourselves in this discussion to the stationary
case, although solutions of eq. (93) with a finite frequency
ω might exist at the threshold. On the other hand one can
prove analytically, that a nontrivial solution of eq. (93) is ω =
0. Using this result we can perform the limit of a stationary
instability and the solvability condition in the stationary case
reduces to the neutral curve

M =
8k(B+k2)(k cosh(k)+F sinh(k))(2k−sinh(2k))
8Ck5 cosh k + (B+k2)

(
sinh3(k)−k3 cosh(k)

)
(94)

which coincides with the result obtained by Takashima22 as-
suming stationarity from the beginning. In the limit of vanish-
ing surface deformations (C → 0) we find the same results as
Pearson18, Nield19 as a special case.

These calculations and also the following ones have been
checked using the ansatz of Nield19, who used Fourier modes.

D. The adjoint dispersion relation

As in the the case of the Rosensweig instability, to get the
adjoint system, one has to start with the fully dynamic prob-
lem. Using again hyperbolic functions the solutions can be
written as

v̄z(z) =
3∑

i=1

(
Āi cosh(λ̄iz) + B̄i sinh(λ̄iz)

)
(95)

θ̄(z) = −(iω̄ − k2 + λ̄3)(λ̄3 − k2)

×
( Ā3

A
cosh(λ̄3z) +

B̄3

A
sinh(λ̄3z)

)
(96)

together with the adjoint roots

λ̄2
1 = k2 (97)

λ̄2
2 = k2 − iω̄ (98)

λ̄2
3 = k2 − iω̄P (99)

With the help of the adjoint boundary conditions, we obtain
the dispersion relation of surface waves in the adjoint space,
that can only be given implicitly again (see Appendix)

D̄(ω̄, ω, k,M) = 0 (100)

This equation also gives ω̄ as a function of the frequency in the
original case ω, although the expression is more complicated
than for the case of the Rosensweig instability and a solution
of Eq. (100) has not been obtained analytically. Nevertheless
we have to guarantee that eq. (100) is fulfilled even when ap-
proaching the critical point for the stationary instability. When
expanding eq. (100) in terms of ω we obtain

D̄(ω̄, ω, k,M) = D̄0(ω̄, ω=0, k,M)
+ D̄1(ω̄, ω=0, k,M) ω +O(ω2) (101)

When approaching the marginal point, D̄1 and all the contri-
butions of higher order in ω cancel with ω becoming 0. To ful-
fill eq. (101), additionally D̄0 has to vanish. It can be shown,
that if ω̄ as a function ω vanishes when ω vanishes, the con-
stant contribution D̄0 becomes zero and the adjoint dispersion
relation is satisfied (see Appendix). Therefore the instabil-
ity in the adjoint case occurs at the same point with the same
characteristics.

VII. SUMMARY AND OUTLOOK

In this article we present a method to find the adjoint sys-
tem of equations and the corresponding boundary conditions
for surface driven instabilities with a deformable surface. In
particular we discuss explicitly the case of the Rosensweig in-
stability (in magnetic gels) and the case of pure Marangoni
convection. As a special case the adjoint system for the case
of pure ferrofluids is obtained straightforwardly when taking
the limit of a vanishing shear modulus.

For the adjoining process it turns out to be very important,
that the system is treated as a dynamical one and as compress-
ible. In the end, however, the general set of adjoint equations
can be simplified using the incompressibility condition.

The relation between the adjoint and the original frequency
in the case of the Rosensweig instability is simply ω̄ = −ω.
This solution has a straightforward physical interpretation,
which is that left traveling waves in the original space trans-
form into right traveling waves in the adjoint space and vice
versa. The expressions for the adjoint eigenvectors take the
same structure as the ones in the original case, but due to the
dynamic coupling between the strain field and the velocity
field, the adjoint strain field acquires units of a shear modu-
lus. In the case of Marangoni convection the relation between
the original and the adjoint frequency is more complicated and
is only given implicitly. Nevertheless, the adjoint dispersion
relation for this case is also fulfilled in the stationary limit.

The obtained results now allow a weakly nonlinear anal-
ysis of instabilities with a deformable surface based on the
fundamental hydrodynamic equations leading to the desired
amplitude equation. In the case of the Rosensweig instability
this has already been done and will be presented in a future
article.
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Appendix: Dispersion relations for Marangoni convection

In this Appendix we give the dispersion relations of the
original and the adjoint Marangoni problem. In particular we
discuss the adjoint dispersion relation in the limit of ω → 0.
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The solvability condition of the system of dynamic equa-
tions (53 -56) together with the boundary conditions (57 -61)
at the deformable surface yields the dispersion relation. It de-

scribes the relation between the frequency and the wave vector
of surface waves propagating on a free surface. In an implicit
form (and using λ1 = k) it reads

D(ω, k,M) ≡ iω5P3(P − 1)k
{

k
[
iωPCλ3 cosh(λ3)

(
2kλ2

(
k2(4iωP(P − 1) +M)− 2ω2P(P − 1)

)
+sinh(k) sinh(λ2)

(
iωk2(M+ 8iωP(P − 1))− iω3P(P − 1) + 2k4(M+ 4iωP(P − 1)

))
+k3λ3M(B + k2)(λ2 sinh(k)− k sinh(λ2)) + sinh(λ3)

(
λ2k

(
Mk2(2P − 1)(B + k2)− 8ω2P2k2CF(P − 1)

−4iω3P2(P − 1)CF
)

+ sinh(k) sinh(λ2)
(
k4(B + k2)(2P − 1)M+ iωPMk2(B + k2)− 8ω2P2(P − 1)FCk4

−8iω3P2(P − 1)FCk2 + ω2P2(P − 1)FC
))
− λ2 cosh(λ2)

(
(B + k2)λ3

(
Mk2 − ω2P(P − 1)

)
cosh(λ3) sinh(k)

+iωP
(
2CMλ3k

3 + sinh(k) sinh(λ3)(iω(P − 1)(B + k2)F + CMk2(2k2 + iωP))
))]

+cosh(k)
[
λ2 cosh(λ2)

(
iωPCλ3 cosh(λ3)

(
iω3P(P − 1)− 2k4(M+ 4iωP(P − 1))

−iωk2(M+ 4iωP(P − 1))
)
− sinh(λ3)

(
k4M(B + k2)(2P − 1)− 8ω2P2(P − 1)FCk4 − 4iω3P(P − 1)FCk2

+ω4P2(P − 1)FC
))

+ k2
(
(B + k2)λ3(Mk2 − ω2P(P − 1)) cosh(λ3) sinh(λ2) + iωP

(
CMλ2λ3(2k2 + iω)

+ sinh(λ2) sinh(λ3)(iω(P − 1)F(B + k2) + CM(iω + k2)(iωP + 2k))
))]}

= 0 (A1)

Taking the stationary limit of this expression (while neglecting
the five trivial roots ω = 0) results in the neutral curve given
in Eq. (94).

Using the same procedure for the adjoint problem, yields
the implicit dispersion relation in the adjoint space (using
λ̄1 = k)

D̄(ω̄, ω, k,M) ≡ P(P − 1)iω̄3
{
−
[
λ̄3 cosh(λ̄3)

(
λ̄2 cosh(λ̄2) sinh(k)

(
iω̄3k2(B + k2)(P − 1)P

+iωACF(2k + iω̄(P − 1))
)

+ k cosh(k)
(
iω̄2ωCP2(ω̄2 + 4iω̄k2 − 8k2) cosh(λ̄2)− (iωACF(2k2 + iω̄(P − 1))

+iω̄3k2(B + k2)P(P − 1)) sinh(λ̄2)
)

+ iωω̄2Ck2P2(P − 1)
(
8k3λ̄2 − 4iω̄kλ̄2 + (8k4 − 8iω̄k2 − ω̄2) sinh(k)

× sinh(λ̄2)
))

+ kF
(
iωACF

(
(2k2 − iω̄) sinh(λ̄2)− 2kλ̄2 sinh(k)

)
+ sinh(λ̄3)

(
iωCλ̄2(4k2(P − 1)P2(2k2 − iω̄)ω̄2

+A(k2(2− 4P) + iω̄P) + cosh(k) cosh(λ̄2)(2Ak2(2P − 1)− iω̄(P − 1)A + ω̄2P2(P − 1)(ω̄2 + 4iω̄k2 − 8k2)))
+iω̄3λ̄2k(B + k2)(P − 1)P − iω̄3k2P(P − 1)(B + k2) cosh(k) sinh(λ̄2)− iωkC sinh(k) sinh(λ̄2)(A

×(iω̄(3P − 1) + k2(4P − 1) + ω̄2P2(P − 1)(ω̄2 + 8iω̄k − 8k4)))
))]

+
P θ̂ − 1
PDŵ

k2M
[
cosh(λ̄3)λ̄3

×
(
λ̄2

(
iωACF(P − 1)− 2ω̄2k3P(B + k2) + 2ω̄2P2(B + k2)

)
+ sinh(k) cosh(λ̄2)

(
iωACFk2(2P − 1)

+ωω̄ACF(P − 1) + 2ω̄2k4P(B + k2)− 2ω̄2k4P2(B + k2) + iω̄3k4(B + k2)− iω̄3k2P2(B + k2)
))

+ω̄2k2(B + k2)FP(P − 1)
(
2kλ̄2 + (2k2 − iω̄) sinh(k) sinh(λ̄2)

)
sinh(λ̄3)− iωCkλ̄2 cosh(λ̄2)

×
(
AF λ̄3 + k sinh(λ̄3)(AF sinh(λ̄3)− ω̄3P2(P − 1)(λ̄3 cosh(λ̄3) + F sinh(λ̄3)))

)
− k cosh(k)

(
λ̄2 cosh(λ̄2)

×
(
λ̄3(iωACF(2P − 1) + 2ω̄k2(B + k2)(P − 1)P) cosh(λ̄3) + 2ω̄2k2FP(P − 1)(B + k2) sinh(λ̄3)

)
−iωC

(
sinh(λ̄2)(k2 − iω̄)(AF sinh(λ̄3) + iω̄3P(P − 1)(λ̄3 cosh(λ̄3) + F sinh(λ̄3)))

))]}
= 0 (A2)

Here D̄ stills contains ω, the frequency of surface waves in the original space. To find the relation between ω̄ and ω is not as
simple as in the case of the Rosensweig instability. However, all what we need is to guarantee that ω̄ vanishes at the linear
threshold of the physical problem, where ω = 0. The reason for this requirement is that the resonance condition for a nonlinear
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expansion of the basic equations cannot be satisfied in the case
of a finite adjoint frequency ω̄ but a vanishing frequency ω.
In the main text the expansion of D̄ in terms of ω is given,
Eq.(101), and will not be repeated here. As stated already

above, the adjoint dispersion relation depends on the original
eigenvectors due to the dynamic bulk coupling between the
temperature and the velocity field. The stationary limit for the
latter one is given by

vz(z) =
8Mck

3 cosh(k)
PN

{
kz sinh(k) cosh(kz)−

[
kz cosh(k) + sinh(k)− z sinh(k)

]
sinh(kz)

}
ξ (A3)

while the stationary eigenvector for the temperature field reads

θ(z) =
1
PN

{
2k2M cosh(k)

(
kz cosh(k)− (z − 3) sinh(k)

)
z cosh(kz) (A4)

−
[
16k2F +M

(
k2(1 + z)− 1 + (1 + k2(1 + z)) cosh(2k)

)
+ k
(
M(1− z + k2z2)− 8F

)
sinh(2k)

]
sinh(kz)

}
ξ

with the abbreviation

N = 2k
(
(Mc−8)k2−2F

)
cosh(k) + 4kF cosh(3k) +

(
8(1−2F)k2 +Mc + (8k2−Mc) cosh(2k)

)
sinh(k) (A5)

We can substitute Eqs. (A3) and (A4) into the constant contribution D̄0 of Eq. (101) resulting in the explicit expression

D̄0(ω̄, ω=0, k,M) = ω̄(ω=0)k2(B2 + k2)(P − 1)2 P3
(
k cosh(k) + F sinh(k)

)2k sinh2(k)(sinh(2k)− 2k)
1 + 2k2 − cosh(2k)

(A6)

When assuming P 6= 1 and k 6= 0, D̄0 = 0 can only be
satisfied if ω̄(ω = 0) = 0. Thus, for a stationary instability in

the original case, also the adjoint case is stationary.

1 M. D. Cowley and R. E. Rosensweig, “The interfacial stability of
a ferromagnetic fluid,” J. Fluid Mech. 30, 671 (1967)

2 R. E. Rosensweig, Ferrohydrodynamics (Cambridge University
Press, Cambridge 1985)

3 S. Bohlius, H. R. Brand and H. Pleiner, “Surface Waves and
Rosensweig Instability in Isotropic Ferrogels,” Z. Phys. Chem.
200, 97 (2006)

4 C. Gollwitzer, I. Rehberg and R. Richter, “Via hexagons to
squares: experiments on hysteretic surface transformations under
variation of the normal magnetic field,” J. Phys. Condens. Matter
18, S2643 (2006)
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