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ABSTRACT

Nonlinear hydrodynamic equations for viscoelastic media are discussed. We start from the recently de-
rived fully hydrodynamic nonlinear description of permanent elasticity that utilizes the (Eulerian) strain
tensor. The reversible quadratic nonlinearities in the strain tensor dynamics are of the 'lower convected'
type, unambiguously. Replacing the (often neglected) strain diffusion by a relaxation of the strain as a
minimal ingredient, a generalized hydrodynamic description of viscoelasticity is obtained. This can be
used to get a nonlinear dynamic equation for the stress tensor (sometimes called constitutive equation) in
terms of a power series in the variables. The form of this equation and in particular the form of the non-
linear convective term is not universal but depends on various material parameters. A comparison with
existing phenomenological models is given. In particular we discuss how these ad-hoc models fit into the
hydrodynamic description and where the various non-Newtonian contributions are coming from.

INTRODUCTION

Hydrodynamics is a well established field to de-
scribe macroscopically simple fluids by means of
the Navier-Stokes-, continuity, and heat conduc-
tion equations. However, it applies also to
more complex fluids that are fully characterized
by conservation laws and broken symmetries.
This more general hydrodynamic method has been
established in the 60s [1-3] and applied e.g. to
superfluids [4] and liquid crystals [5]. It is based
on (the Gibbsian formulation of) thermodynamics
[6,7], symmetries and well-founded physical prin-
ciples [8]. A detailed description of this method
can be found in [5,9]. Somewhat related ap-
proaches have been used for liquid crystals [10-
12] and more generally in [13,14].
On the other hand, non-Newtonian fluids are be-
lieved to show non-universal behavior and a host
of different empirical models have been proposed
[15-20] to cope with the flow rheology of such
substances. Typically, these models are formu-
lated as generalizations of the linear, Newtonian
relation between stress and deformational flow
allowing for additional time derivatives and non-
linearities. They are tailored to accommodate em-
piric findings or are based on principles [19] that
are ad-hoc and generally insufficient.
Quite recently we have derived a nonlinear hydro-
dynamic description of elastic media [21,22] that
is based on first principles, only, making use of

thermostatics, linear irreversible thermodynamics,
symmetries and broken symmetries, and invari-
ance principles. It has been confirmed within the
GENERIC formalism [23]. Allowing in this hy-
drodynamic description the strains to relax (and
not only to diffuse) a generalized hydrodynamic
description of nonlinear viscoelasticity is obtained
in terms of a dynamic equation for the strain ten-
sor [21,22]. We transform it into a description in
terms of a dynamic equation for the stress tensor.
This can only be done approximately in the form
of a power expansion in the variables. Up to sec-
ond order, a formulation is obtained that can di-
rectly be compared with many of the empirical
models proposed to describe non-Newtonian
rheology. The comparison reveals possible incon-
sistencies and connects the various ad-hoc addi-
tions of those models with physical relevant proc-
esses, like strain relaxation, elasticity and viscos-
ity. A comparison with recent constitutive equa-
tions that refer to specific microscopic variables
and processes, like convective constraint release,
will not be done in the present paper. Here we
rather concentrate on the simplest generalized hy-
drodynamic description of non-Newtonian rheol-
ogy in terms of a relaxing strain field, while a
detailed comparison with those theories requires
the use of additional relaxing fields.
The present contribution is based on material pre-
sented and discussed in detail in [24].
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RESULTS  AND  DISCUSSION

In an Eulerian description of elasticity deforma-
tions are described in terms of body frame coordi-
nates that are viewed as functions of the labora-
tory frame coordinates. Since these two frames are
completely independent and generally different in
their origin and their orientation (this is a correct
form of the ‘frame indifference principle’), the
dynamic equation for the (symmetric Eulerian)
strain tensor DU=A+X contains the lower con-
vected time derivative D [21,22], while in a La-
grangian picture it would be upper convected. A
is the symmetric velocity gradient tensor, often
called ‘rate of strain’ tensor, although in an Eule-
rian description it is not the time derivative of the
strain tensor. The phenomenological current X
describes strain diffusion and, in the case of a
non-permanent elasticity, strain relaxation. The
latter is expressed by the elastic stress tensor Y.
For an isotropic medium the most general expres-
sion within linear irreversible thermodynamics
reads
X = a1 Y + a3 I trY + ∑ a2n (Un•Y + Y•Un)      (1)
    + ∑ a4n ( I Un :Y + Un trY) + ∑ a5nm (Un Um :Y           
    + Um Un :Y) + ∑ a6nm (Un•Y•Um + Um•Y•Un)  
with Un the second rank tensor U•U• … •U  that
follows from a (n-1)-fold scalar contraction of n
factors U, I is the unity tensor, and tr is the trace.
The sums ∑ in (1) run from n,m = 1 to infinity.
The coefficients ax are arbitrary functions of the
scalar state variables, like density, temperature,
and the three independent scalar invariants of the
strain tensor trU, trU2, and trU3. The explicit form
of (1) up to quadratic order is listed in [24]. If U
is uniaxial and traceless, then the traceless part of
Un is proportional to U  and the sums in (1) are
finite. By allowing a nonlinear dependence of X
on Y one would leave the solid grounds of well-
established statistical physics, since not very
much is known on the validity range of ‘non lin-
ear irreversible thermodynamics’, where the cur-
rents depend nonlinearly on the forces. A second
phenomenological process describes the connec-
tion between the viscous part of the stress tensor
sv and A . Generally, this relation has the same
form as Eq.(1), with viscosities n1, n 2n, n3, n4n,
n5nm, n 6nm that depend on trU , trU2, and trU3,
while in the incompressible case n3, n4n are zero.
The elastic part of the stress tensor se = -  X  +
X•U + U•X is nonlinear due to the lower con-
vected time derivative for U. Finally, static elas-
ticity is described by a suitable energy density

function e= e(trU, trU2, trU3), from which X ≡ ∂e
§ ∂U  follows.
Having set up the dynamic equation for the strain
tensor and the strain tensor dependence of the
material tensors, one can derive from that a de-
scription in terms of the stress tensor. This can
only be done in an approximate way (as a power
series expansion up to second order in the old and
new variables), since the equations are nonlinear.
Of course, the resulting equations are less general
than the starting ones and only applicable, if
quadratic nonlinearities are sufficient for the prob-
lem at hand. The final equation for the stress ten-
sor is listed and discussed in detail in [24], and is
not shown here, since it is too complicated for the
required Word format of this abstract. It contains
s, its convected time derivative (which is neither
of the upper nor of the lower type, but depends on
a certain combination of material parameters) de-
scribing stress relaxation, A the effective viscosity
part, and  the convected time derivative of A
(again material dependent, but generally different
from that for s) as well as nonlinearities in the
stress tensor, and in s and A with ∂A § ∂ t. The
material parameters that occur at different places
in this equation are not completely independent
from each other and are combinations of the un-
derlying physical parameters due to strain relaxa-
tion, viscosity and elasticity. It is in the form that
many empirical constitutive models have and a
direct comparison is possible. By putting to zero
some of the material parameters involved one can
either recover those constitutive models or show
their intrinsic inconsistency. Among the first are
(for the Eulerian description) the lower convected
Maxwell [19] and Oldroyd  A [15] models, as
well as the Giesekus model [18], if for the latter a
suitably chosen material dependent convective
time derivative is used. The models with a corota-
tional time derivative, Johnson-Segalman [25]
and Jeffries [26] are inconsistent, since this spe-
cial form of the convective time derivative is in-
compatible with other approximations and omis-
sions made in these models. A corotational time
derivative is more suitable for those descriptions
that use an orientational order parameter tensor to
describe viscoelasticity [27]. The 'second order
fluid' [19] contains a contribution A•A  to the
stress tensor, which, by comparison with our gen-
eral equation, turns out to be related to the mate-
rial dependent part of the convected time deriva-
tive of A, originating from the strain dependence
of elasticity, viscosity and strain relaxation. This
quadratic A•A contribution to the stress tensor
cannot be obtained by a quadratic extension of
linear irreversible thermodynamics. Even when no
convective derivatives are considered, very often
nonlinear phenomenological relations s= s( A)
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are used. Examples are ‘power law fluids’, but
much more complicated forms are used [26].  The
problem with all these models is the compliance
with thermodynamics. The expansion for the vis-
cosity tensor in terms of U  avoids this problem
and can be carried on to any order desired. How-
ever, similar contributions to the stress tensor
originate from the other phenomenological expan-
sions and change quite considerably the structure
of the dynamic equation for the stress tensor ren-
dering inconsistent any model that uses a power
law description of the shear viscosity, only.

SUMMARY

In this manuscript we have shown that the hydro-
dynamically derived model for non-Newtonian
fluids in terms of the Eulerian strain tensor con-
tains most of the standard rheological models as
special cases and discards a few of them. Our ap-
proach is more general, as it contains powers of
the relevant fields of arbitrary order when written
in terms of the stress tensor. The hydrodynamic
framework automatically ensures the resulting
equations to conform with the appropriate physi-
cal principles (e.g. Galilean invariance), thermo-
dynamic laws (e.g. energy conservation and dissi-
pative entropy production), as well as with other
applicable symmetry properties. The hydrody-
namic method also allows to discriminate those
pieces of the dynamics that are due to general
principles from the unavoidable phenomenologi-
cal part. The latter is given here in the form of
truncated power series in the strain tensor that can
systematically be generalized when necessary. For
the phenomenological part we stick to the well-
established 'linear irreversible thermodynamics',
which, being linear in the generalized forces, nev-
ertheless leads to equations highly nonlinear in
the variables like the strain tensor.

REFERENCES

1. N. N. Bogoljubov, Phys.Abhandl.SU 6 , 229
(1962).
2. L. P. Kadanoff and P. C. Martin, Ann. Phys.
24, 419 (1963).
3. P. Hohenberg and P. C. Martin, Ann. Phys.
34, 291 (1965).  
4. I. M. Khalatnikov, Introduction to the Theory
of Superfluidity, Benjamin, New York (1965).                                         
5. P. C. Martin, O. Parodi, and P. S. Pershan,
Phys. Rev. A 6, 2401 (1972).

6. H. B. Callen, Thermodynamics, John Wiley,
New York, 1st ed.(1960) and 2nd ed.(1985).  
7. L. E. Reichl, A Modern Course in Statistical
Physics, Texas University Press, Austin (1980).
8. D. Forster, Hydrodynamic Fluctuations, Bro-
ken Symmetry and Correlation Functions, Ben-
jamin, Reading, Mass. (1975).
9. H. Pleiner and H. R. Brand, in Pattern Forma-
tion in Liquid Crystals, eds. A. Buka and L.
Kramer, Springer, New York, p.15 (1996).
10. F. M. Leslie, Arch. Rat. Mech. Anal. 28, 265
(1968).
11. J. L. Ericksen, Arch. Rat. Mech. Anal. 4, 231
(1960) and 9, 371 (1962).
12. S. Hess, Z. Naturforsch. 30a, 728 and 1224
(1975).
13. M. Grmela, Phys. Lett. A 102, 355 (1984);
111, 36 and 41 (1985).
14. A. N. Beris and B. J. Edwards, Thermody-
namics of flowing systems with internal micro-
structure, University Press, Oxford (1994).
15. J. G. Oldroyd, Proc. Roy. Soc. A 200, 523
(1950).
16. B. D. Coleman and W. Noll, Rev. Mod.
Phys. 33, 239 (1961).
17. C. Truesdell and W. Noll, The non-linear
field theories of mechanics, Springer, Berlin/New
York (1965).
18. H. Giesekus, Rheol. Acta 5, 29 (1966) and J.
Non-Newt. Fluid Mechanics 11, 69 (1982).
19. R. B. Bird, R. C. Armstrong, and O. Has-
sager, Dynamics of Polymeric Liquids, Vol.1,
John Wiley & Sons, New York (1977).
20. R. G. Larson, Constitutive equations for
polymer melts and solutions, Butterworths, Bos-
ton (1988).
21. H. Temmen, H. Pleiner, M. Liu, and H. R.
Brand, Phys. Rev. Lett. 84, 3228 (2000) and 86,
745 (2001).
22. H. Pleiner, M. Liu, and H. R. Brand, Rheol.
Acta 39, 560 (2000).
23. M. Grmela, Phys. Lett. A 296, 97 (2002).
24. H. Pleiner, M. Liu, and H. R. Brand, Rheol.
Acta xx, xxx (2004); DOI 10.1007/s00397-004-
0365-8.
25. M. W. Johnson and D. Segalman, J. Non-
Newt. Fluid Mechanics 2, 255 (1977) and J.
Rheol. 22, 445 (1978).
26. G. Boehme, Stroemungsmechanik nichtnew-
tonscher Fluide, Teubner, Stuttgart, 2nd edition,
(2000).
27. H. Pleiner, M. Liu, and H. R. Brand, Rheol.
Acta 41, 375 (2002).


