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Abstract

We develop coarse-grained (CG) models for simulating homopolymers in inhomogeneous

systems, focusing on polymer films and droplets. If the CG polymers interact solely through

two-body potentials, then the films and droplets either dissolve or collapse into small

aggregates, depending on whether the effective polymer–polymer interactions have been

determined from reference simulations in the bulk or at infinite dilution. To address this

shortcoming, we include higher order interactions either through an additional three-body

potential or a local density-dependent potential (LDP). We parameterize the two- and

three-body potentials via force matching, and the LDP through relative entropy minimization.

While the CG models with three-body interactions fail at reproducing stable polymer films and

droplets, CG simulations with an LDP are able to do so. Minor quantitative differences

between the reference and the CG simulations, namely a slight broadening of interfaces

accompanied by a smaller surface tension in the CG simulations, can be attributed to the

deformation of polymers near the interfaces, which cannot be resolved in the CG

representation, where the polymers are mapped to spherical beads.

Keywords: coarse-graining, polymer, thin films, droplets, local density dependent potential,

three-body potential, inhomogeneous system
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1. Introduction

Coarse-graining is a systematic approach to reduce the num-

ber of degrees of freedom for building a simplified model of a

system which reproduces its essential physical properties. The

major advantage of coarse-grained (CG) models is that they

provide access to longer simulation time- and length-scales, by

reducing the number of interaction sites and introducing softer

interaction potentials which accelerate the dynamics. Numer-

ous CGmodels have been developed for simulating, e.g., poly-

mer melts [1–3], organic solvents [4–6], lipid membranes

∗ Author to whom any correspondence should be addressed.

[7, 8], conjugated polymers [9–14], peptides [15], surfactants

[16], and proteins [17].

CG potentials can be viewed as a projection of a many-body

potential of mean force onto a CG force field [18, 19]. This

projection is, however, not unique, as it depends on the thermo-

dynamic or structural properties which should be preserved.

Coarse-graining based on, e.g., reproducing entropy [20–23],

forces [18, 19, 24, 25], or structure [26, 27] usually leads to

distinct CG models of the system as the projection to a CG

potential is in general not unique. In the limit of a complete

set of CG basis functions, the different techniques will indeed

lead to the same true many-body CG potential of mean force.

However, this equivalency does not apply to practical cases of
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J. Phys.: Condens. Matter 33 (2021) 254002 F Berressem et al

relevance with a limited CG basis set, as structure- and relative

entropy-based CG methods minimize a different functional

than force matching (FM) methods [19, 21]. Further, although

there is a one-to-one relation between the pair structure and

two-body potentials [28], such associations generally do not

hold for higher order structural correlations and potentials. As

a result, different parametrization schemes can lead to different

CG potentials [29], and therefore CG models cannot represent

all features of the original reference systems (representabil-

ity problem). Further, CG models are typically optimized at

one specific state point, e.g., a certain temperature and/or

pressure, and are therefore not necessarily suited for study-

ing the same system at a different state point (transferability

problem) [30, 31]. Finally, the CG force fields should be com-

putationally efficient to compensate for the loss in molecular

details.

While a fairly coherent understanding of bottom-up coarse-

graining based on structural correlations or inter-atomic forces

has been established for homogeneous liquids in the bulk [19],

one is often interested in phenomena taking place at interfaces,

which are much less understood. Typical examples are wetting

films or droplets and aqueous/organic interfaces in biological

cells [32, 33]. These systems are intrinsically inhomogeneous,

either in density or other local descriptors. Apart from these

examples, CGmodels are particularly sensitive to local density

fluctuations, even in bulk systems, due to their softer interac-

tion potentials and smaller number of particles [34–36]. Local

inhomogeneity imposes extra demands on the CG model, in

particular its tolerance to density variations [37–39]. Higher-

order many-body expansions [40–45] and an explicit density

dependence of interaction potentials [30, 39, 46–49] are two

straightforward approaches that can improve transferability

of CG models. These improvements have, however, different

accuracy and computational overhead.

The aim of this work is to compare the accuracy and

efficiency of two CG models for simulating homopolymers

in inhomogeneous systems, such as thin films or droplets.

These systems are characterized by large surface-to-volume

ratios and strong density variations near the polymer–solvent

interface. The first model incorporates three-body Still-

inger–Weber basis functions, while the second has an explicit

local density dependence.We show that the three-body expan-

sion is computationally demanding and does not lead to stable

interfaces. In contrast, the local density potential is capable of

reproducing properties of inhomogeneous systems without a

significant computational overhead.

The remainder of this manuscript is organized as follows:

in section 2.1 we present our reference systems, while we

have summarized the employed coarse-graining methods in

section 2.2. The resulting two- and many-body interactions

of the CG models are discussed in sections 3.1–3.3, and the

properties of the CG simulations are analyzed and compared

to the reference simulations in section 3.4. Section 4 provides a

brief summary of our main findings and an outlook on planned

extensions of our model.

2. Methods

2.1. Microscopically resolved reference systems

The microscopically resolved (MR) reference systems con-

sisted of Np homopolymers dispersed in an implicit solvent.

Polymers were represented by a generic bead-spring model

with N = 20 monomers per chain. Non-bonded interactions

between themonomersweremodeled using the Lennard-Jones

(LJ) potential:

ULJ(ri j) =

⎧

⎪

⎨

⎪

⎩

4ε

[

(

σ

ri j

)12

−

(

σ

ri j

)6
]

, ri j < rc

0, ri j � rc

(1)

with radial distance ri j between particles i and j, interaction

strength ε = kBT , and bead diameter σ. The potential was

truncated at the cutoff radius of rc = 5σ.
Polymer bonds were modeled through the finitely extensi-

ble nonlinear elastic (FENE) potential: [50]

UFENE(ri j) =

⎧

⎨

⎩

−
1

2
kr20 ln

[

1−
(

ri j/r0
)2
]

, ri j < r0

∞, ri j � r0
(2)

with spring constant k = 30 kBT/σ
2 and maximum bond

extension r0 = 1.5σ [51].

All MD simulations were conducted in the NVT ensem-

ble (unless stated otherwise explicitly), N = NpN being the

total number of monomers in the system. The temperature was

kept constant at T = 1.0ε/kB through a Langevin thermostat

with friction coefficient ξ = 1.0m/τ , wherem is the monomer

mass, and τ =
√

mσ2/(kBT) is the unit of time. The equations

of motion were integrated using a Verlet scheme with time

step ∆t = 0.001 τ . All simulations were conducted in cubic

simulation boxes with edge length L and periodic boundary

conditions in all three Cartesian directions.

To characterize the polymer properties in homogeneous

systems, we simulated a bulk polymer melt with Np = 2000

chains. The melt was first equilibrated in the NPT ensem-

ble at a pressure of P = 0 kBT/σ
3, resulting in an average

monomer number density of ρb = 0.921 σ−3 (all quantities

extracted from bulk simulations will be denoted by a sub-

script ‘b’, while the subscript ‘0’ marks quantities obtained or

parameterized at infinite dilution). Once the system reached

equilibrium, we switched to theNVT ensemble using a cubic

simulation box with L = 35.15 σ, and simulated for 2× 107

time steps, saving configurations and taking measurements

every 1000 time steps. We characterized the conformation of

the polymers through the average radius of gyration tensor:

G =
1

N

N
∑

i=1

〈∆ri ⊗∆ri〉 (3)

where ∆ri is the vector from the polymer center of mass to

monomer i, and ⊗ indicates the dyadic product. The radius of
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Table 1. Number of homopolymers Np in polymer films and
droplets, with measured thickness H and radius R, respectively.

System Np L [σ] H or R [σ]

Film 365 28.8 9.6

Film 728 33.2 14.4

Film 1245 37.6 19.2

Droplet 143 31.6 8.5

Droplet 482 40.4 13.0

Droplet 1142 49.2 17.6

Figure 1. Simulation snapshots of (a) a thin film with thickness
H = 8 Rg,b, and (b) a droplet with radius R = 4 Rg,b from the MR
reference simulations. The chains are colored differently for better
distinction. Snapshots have been rendered using visual molecular
dynamics v.1.9.3 [53].

gyration is then Rg =
√

Gxx + Gyy + Gzz, with Rg,b ≈ 2.2 σ in

the bulk simulations.

Thin films were constructed by initially placing the poly-

mers in a slab at the center of the simulation box, so that the

normal vectors of the polymer–solvent interfaces lied paral-

lel to the z-axis. The polymer droplets were created similarly

by initializing the polymers close to each other in the box

center. The size of the simulation boxes was chosen suffi-

ciently large to prevent nonphysical self-interactions and the

coalescence of the films/droplets with their periodic images

(see table 1). Simulations were then performed in the NVT

ensemble at T = 1.0 ε/kB. This state point falls inside the

two-phase coexistence region of the system [52], so that the

polymers separated into a high and low density phase that

coexisted in the same simulation box. Simulation snapshots

of typical films and droplets from the MR simulations are

shown in figure 1. We determined the film thicknesses H and

droplet diameters 2R from the full width at half maximum of

the monomer density profiles (see figure 2(a)). The resulting

H and R values are summarized in table 1, and they are in

good agreement with the estimates H = N/(L2ρb) and R =

[3N/(4πρb)]
1/3, respectively, which assume a homogeneous

monomer density inside the films/droplets and a perfectly

sharp polymer–solvent interface.

Figure 2(a) shows the monomers number density along

the film normal, ρ(z), for the system containing Np = 1245

homopolymers (the data for the thinner films look qualitatively

similar and have been omitted for brevity). Since the simulated

temperature was far below the critical temperature of this sys-

tem (Tc ≈ 2.65 ε/kB [52]), all polymers were part of the thin

film (the density in the ‘vapor’ phase was strictly zero in our

simulations). The density profile has a flat plateau with density

ρ = 0.922 σ−3, which is in excellent agreement with the value

measured in the bulk systems (ρb = 0.921 σ−3). Measurement

uncertainties of the density profiles were estimated from the

standard error of the mean between ten subdivided blocks of

the data. Note that we did not determine the (apparent) width

of the polymer–solvent interfaces, as this measurement would

only be meaningful when the dependence on the lateral box

dimensions is analyzed to account for the broadening due to

capillary waves [54].

The density profile of the polymer centers of mass, ρp(z), is
also flat in the bulk-like interior of the film, but has two dis-

tinct peaks at z = ±8 σ, indicating a surplus of polymers near

the polymer–solvent interfaces (figure 2(a)). This local excess

of polymers can be rationalized by considering the confor-

mation of the individual chains, which we have characterized

via the diagonal components of the radius of gyration tensor

(figure 2(b)). The polymers are essentially isotropic in the cen-

tral region of the film, but they assume an oblate ellipsoidal

shape near the edges of the film, with Gzz < Gyy = Gxx and a

maximum aspect ratio of about Gxx/Gzz ≈ 4.

Finally, we determined the surface tension of the thin films

from the anisotropy of the pressure tensor:

γ =
Lz

2

〈

Pzz −
Pxx + Pyy

2

〉

(4)

where Pαα denotes the diagonal components of the instanta-

neous pressure tensor, which was computed from the Clau-

sius virial equation. The factor of 1/2 in equation (4) is due

to the presence of two interfaces (see figure 1(a)). Here, we

find a value of γ = 1.42 kBT/σ
2 for all three investigated film

thicknesses.

2.2. Coarse-graining procedure

In our CG model, an entire homopolymer chain is represented

by a single spherical particle, as depicted in figure 3. We tested

three different approaches, using (i) only two-body interac-

tions, (ii) a combination of two-body and three-body interac-

tions, and (iii) a combination of two-body and (mean-field)

many-body interactions. In the following, we briefly discuss

these interactions and how they have been parameterized. The

resulting CG potentials are then presented in section 3.

2.2.1. Two-body interaction. In all models, the pairwise inter-

actions were determined using FM [18, 24, 25], where the

force on each CG bead is calculated as the sum of the forces on

the monomers of the corresponding polymer. We determined

the two-body interaction potentials between the CG poly-

mers using FM from bulk simulations, U2b
b , as well as from

simulations containing two isolated polymers, U2b
0 . The first

approach results in a pair potential that (implicitly) includes

many-body effects due to the surrounding polymers, while the

second approach provides the pairwise interaction of only two

polymer chains.

We introduced a cutoff radius, r2bc , beyond which the

CG particles do not interact with each other. The two-body

3
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Figure 2. (a) Number density profiles of monomers (ρ, left axis) and polymer centers of mass (ρp, right axis) as functions of z. The horizontal
dashed line indicates the monomer number density in the bulk system. The vertical dashed lines indicate the positions where ρ(z) drops to
half of its maximum value. (b) Diagonal components of the radius of gyration tensor, Gαα, as functions of z. The horizontal dashed line
indicates the value of Gαα in the bulk simulation. Data shown for a film with thickness H ≈ 8 Rg,b, consisting of Np = 1245 homopolymers.

Figure 3. Schematic representation of (a) a MR polymer chain with
N = 20 monomers, and (b) the CG representation of that chain. In
both panels, the cross indicates the center of mass of the polymer.

forces in the CG model, f2b, were parameterized using cubic

splines with a uniform grid spacing ∆r2b. Thus, there are

K ≡ r2bc /∆r2b grid points and basis functions which depend

linearly on 2K spline coefficients λi. Imposing continuity and

smoothness conditions, reduces the number of free coefficients

to K. These coefficients were then determined by matching

the forces in the CG representation to the ones from the MR

simulations. To determine the K coefficients, we first divided

the MR trajectory in blocks containingNs snapshots each, and

then solved the resulting set of NsNp linear equations with a

constrained least-squares algorithm for each block. Finally, we

tabulated f2b with a grid spacing of∆r2btab = 0.01σ, averaging
over the blockwise results. To ensure a smooth decay to zero

at r2bc , we multiplied the tabulated forces with a smoothing

function fsm for all distances r > rsm:

f sm (r) = cos

(

π

2

r − rsm

r2bc − rsm

)

. (5)

The CG pair potential U2b was then obtained by numerical

integration of f2b. This coarse-graining procedure is imple-

mented in the VOTCA-CSG package [55].

The pair potential U2b
b was determined from the MR melt

simulations (see section 2.1) using a cutoff distance of r2bc =

8σ and a grid spacing of∆r2b = 0.1 σ. Each block contained
300 frames, and the final potential was computed by tak-

ing the average of the 67 blocks. For computing U2b
0 , we

performed 64 independent simulations of two isolated poly-

mers in a large simulation box (L = 60 σ), so that they did

not interact with their periodic images. The polymers were

initialized at large distances and then approached each other

due to the monomer–monomer attraction (see section 2.1). By

evaluating the trajectories of these multiple runs, there were

enough data for capturing the forces at all relevant distances.

For the FM procedure for calculating U2b
0 , we used r2bc = 8σ

and ∆r2b = 0.2 σ, averaging over 14 blocks each containing

750 000 frames. In both cases, we chose rsm = 7.5 σ.

2.2.2. Three-body interaction. Three-body interactions were

taken into account using the Stillinger–Weber (SW) poten-

tial with flexible angular dependence, as implemented

in the VOTCA-CSG package [29] and available under

https://gitlab.mpcdf.mpg.de/votca

USW(rIJ , rIK , θIJK) = f SW (θIJK) exp

(

η

rIJ − rSWc

)

× exp

(

η

rIK − rSWc

)

, (6)

with angle θIJK between the three particles (I being the cen-

tral one), and angular interaction term fSW(θIJK ). The cutoff

distance rSWc determines how many triplets are included into

the local environment of each CG polymer, andUSW smoothly

decays to zero when one of the two inter-particle distances rIJ
and rIK reaches rSWc . The parameter η controls the steepness of
this decay with small η corresponding to a steeper transition.

The angular dependence of USW allows for captur-

ing anisotropic interactions, which occur near the poly-

mer–solvent interfaces in the MR simulations (see figure 2).

The angular interaction term f SW (θIJK) was fitted to the resid-
ual forces of the MR simulations ∆f via the FM procedure

[29]. We determined∆f acting on each CG polymer chain by

subtracting the CG two-body force from the total reference

force from the MR simulations, fMR:

∆f = fMR − f
2b. (7)

In practice, we determined ∆f by recomputing the forces

acting on the centers of mass of the polymers in the MR

4
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trajectories using the pairwise forces f
2b. For f2b, we either

used the forces due to U2b
b or U2b

0 (see section 2.2.1). To

distinguish the resulting three-body potentials, we will refer

to them as USW
∆b and USW

∆0 , respectively. The subscript ‘∆’

indicates that the SW potential was parameterized using the

residual forces ∆f (equation (7)). Parameterization of USW

according to ∆f ensures the orthogonality of the two-body

and three-body terms [29]. The fit parameters then depend on

the choice of the pair potential, so that the additional three-

body contribution can be regarded as a correction term to either

U2b
b or U2b

0 .

All trajectory reruns with pair potentials were carried out

with the GROMACS simulation package [56]. All reruns with

three-body potentials were carried out with the LAMMPS sim-

ulation package [57] with the user pair style sw/table [29] as

available under https://gitlab.mpcdf.mpg.de/votca/lammps.

We used a cubic spline representation for f SW
(

θi jk
)

with

KSW = 31 grid points and a linear dependence on the 2KSW

spline coefficients. Treating the two exponential terms in

equation (6) as prefactors led to a linear set of equations

whichwas solved by a constrained least-squares solver. For the

thinnest films with H ≈ 4 Rg,b, we averaged over 200 blocks

containing each 200 frames, while for the remaining systems

we averaged over 800 blocks each containing 50 frames. We

systematically varied the cutoff radius of USW
∆b and USW

∆0 from

rSWc = 4σ to rSWc = 10σ, and the parameter η from η = σ to

η = 4 σ.

2.2.3. Local density-dependent interaction. Alternatively,

many-body interactions were included in our CG simula-

tions by supplementing the two-body pair potential with a

local density-dependent potential (LDP). In this representa-

tion, each CG polymer carries a cloud, which effectively

describes its monomers that were integrated out during the

coarse-graining procedure (see figure 3). For simplicity, we

assumed that the overlap of these clouds can be described

by radial weight functions ω(rIJ), which only depend on the

distance rIJ between the CG particles I and J. In this work,

we constructed the weight function ω(rIJ) by computing the

pairwise overlap integral between the average monomer den-

sity clouds around the polymers centers of mass, ρcloud(r). To
determineω(rIJ), we first computed ρcloud(r) from theMR bulk

simulations:

ρcloud(r) =

〈

1

N4πr2

N
∑

i=1

δ
(

|ri − rcom| − r
)

〉

, (8)

where rcom is the center of mass position of the polymer.

Assuming a pairwise overlap of the density clouds, the weight

function ω(rIJ) is then given by:

ω(rIJ) =

∫

V

ρcloud(
∣

∣r
I
com − r

∣

∣)ρcloud(
∣

∣r
J
com − r

∣

∣) d3r. (9)

Thus, ω(rIJ) can be interpreted as the number density of

monomer pairs between a pair of (CG) polymers at center-to-

center distance rIJ . Figure 4 shows ρcloud(r) as well as ω(r),
which are both bounded and monotonically decrease with

increasing r. The monomer density decays almost completely

Figure 4. Weight function ω(r) (left axis) and monomer density
around the polymer center of mass ρcloud(r) (right axis) as functions
of radial distance r.

at r ≈ Rg,b while ω(r) vanishes almost entirely at r ≈ 2 Rg,b, as

expected.

The potential energy ofCG particle I due to the LDP is then:

ULDP
I = G (ϕI) (10)

where G is an embedding function, and ϕI is the local density
of (fictitious) monomer pairs at the position of CG particle I

due to the other CG particles.We posit thatϕI can be expressed

as the linear superposition of the pair density clouds of the

other particles, that is:

ϕI =
∑

J 	=I

ω(rIJ). (11)

In this context, the embedding function G is a mean-field

representation of many-body effects [58], and local density

gradients enter the force calculation via the gradient of the

embedding function. Thus, many-body effects are related to

the curvature ofG: if G is a linear function of ϕI , then the total
potential reduces to a two-body pair potential. If G has a posi-

tive curvature, i.e., d2G/dϕ2 > 0, then the LDP becomesmore

repulsive as the local density increases. Due to the assumed

pairwise additivity of the weight functionsω(rIJ), the LDP can

be interpreted as a generalized pair potential, which is why

in practice LDPs are typically implemented as pair potentials

[59–61]. Hence, the pressure tensor can be calculated as usual

via the standard Clausius virial equation [62].

The embedding function was implemented as a cardi-

nal B-spline function, with equally spaced nodes λi at dis-
tances ∆ϕ = 0.5. This representation has the advantage that

the derivatives with respect to the amplitude of the nodes,

∂ULDP/∂λi, are linear, which facilitates the calculation in the

update step (see equation (15)). The number of nodes was

adapted during the coarse-graining procedure to cover the

required density range. We determined the embedding func-

tion G from our MR simulations using relative entropy min-

imization (REM) [20, 63]. The goal of this technique is to

optimize the CG potential in such a way that the difference

between the probability distribution of the MR configurations

in the CG and theMR representation is minimized. This differ-

ence can bemeasured by the relative entropy, also known as the

Kullback–Leibler divergence [64], which can be interpreted

5
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as the difference in information conveyed by the probability

distributions. So in contrast to other coarse-graining methods

like FM or IBI, which are designed to reproduce the potential

of mean force or the radial distribution function, respectively,

REM aims to minimize the difference in the configurational

probability distributions. As a consequence, the resulting CG

potentials will differ, because there is in general no unique

parameterization which optimizes all quantities of the target

system.

In the canonical ensemble, the relative entropy can be

written as:

Srel = β〈UCG − UMR〉MR − β (ACG − AMR)+ 〈Smap〉MR

(12)

where UMR and UCG denote the potential functions, and AMR

and ACG the configurational parts of the Helmholtz free energy

for the MR and CG system, respectively. The term 〈Smap〉MR
is

the (unavoidable) contribution to the relative entropy due to

the mapping. The relative entropy Srel can be optimized using

approximate and/or iterative methods to find a (locally) opti-

mal set of parameters of the potential. In this work, we used a

Newton–Raphson update rule to find the root of ∂Srel/∂λ, that
is

λ j+1 = λ j −

(

∂Srel
∂λ

)

/

(

∂2Srel

∂λ2

)

(13)

where j denotes the iteration. Here, the parameters to be opti-

mized are the amplitudes of the nodes λi of the cardinal B-

spline representation of the embedding functionG. To improve

the stability of the updates and the convergence of the opti-

mization, we multiplied the change of the parameter ∆λi
with a constant factor α = 0.01 and clipped it at ±1kBT . The

resulting update rule for the coefficients is then:

λ j+1
i = λ j

i −∆λ j
i (14)

∆λ j
i = min

(

−1,max

(

1,α

[〈

∂ULDP

∂λi

〉

MR

−

〈

∂ULDP

∂λi

〉

CG

]

×

[

〈

∂2ULDP

∂(λi)
2

〉

MR

−

〈

∂2ULDP

∂(λi)
2

〉

CG

+ β

〈

(

∂ULDP

∂λi

)2
〉

CG

− β

〈

∂ULDP

∂λi

〉2

CG

]−1
⎞

⎠

⎞

⎠ (15)

where 〈·〉MR and 〈·〉CG indicate averaging in the mapped MR

and CG representation, respectively. For all investigated sys-

tems, we used 500 iterationswith 200 000 simulation timesteps

per iteration. All simulations with LDPs were carried out on

graphics processing units with the HOOMD-blue simulation

package (v. 2.4.2) [59–61].

3. Results

3.1. Two-body interactions

In a bulk polymer melt, every monomer is isotropically sur-

rounded by other monomers, both from the same chain as from

the other ones. Consequently, the intra- and inter-chain inter-

actions compensate each other, and the polymers behave as

Figure 5. Pair potential acting between two CG polymers, computed
from bulk melt simulations (U2b

b , blue) and from simulations
containing two isolated polymers (U2b

0 , red). The corresponding
diameters of the polymers, 2 Rg, from the MR simulations are
indicated by a black and red vertical line, respectively.

dispersed in a Θ-solvent [2, 65, 66].3 This does, however, not

mean that the effective polymer–polymer interactions vanish,

but that they are purely entropic instead. Figure 5 shows the

effective pair potential between CG polymers in a melt, U2b
b ,

which is repulsive and bounded, allowing a partial overlap of

the CG polymers. This behavior is due to the fractal and open

nature of the polymer coils, which lets the centers of mass of

two coils be at the same place while each chain can fluctuate

without intersecting the other (see figure 3(a)).

Previous consideration within renormalization-group the-

ory [70] predicted that the effective potential can be approx-

imated rather accurately by a Gaussian function U2b
b ∝

exp
[

−(rIJ/σp)
2
]

, with characteristic length-scale of the inter-

action σp. Our simulation data can be fitted perfectly to

this functional form with σp = 3.4 σ. Such Gaussian poly-

mer–polymer interactions have also been reported in previous

lattice [71] and off-lattice [1, 70] simulations of athermal poly-

mer solutions. In particular, Louis et al varied the polymer

concentration over a wide range, from dilute solutions up to

almost five times the overlap concentration, finding that U2b
b

barely changed [1]. Further, they showed that U2b
b reproduces

rather accurately the equation of state of a polymer solution.

However, a CG description of the polymers only in terms of

U2b
b is insufficient for modeling polymer films and droplets, as

the CG polymerswill repel each other rather than form a stable

film, unless additional external constraints are applied.

The pair potential between two isolated polymers, U2b
0 , is

attractive (see figure 5), resembling a soft square-well poten-

tial with a well depth of about −13 kBT and a well width of

roughly 2σ. This strong polymer–polymer attraction is due to

the attractive tail of the LJ interaction between the monomers

in the MR model (see equation (1)). At such low polymer

concentrations, the employed MR model effectively describes

polymers in a poor (implicit) solvent [52, 72, 73], which

have collapsed into compact globules with a distinctly smaller

radius of gyration compared to their coil-like analogs in the

3The Flory ideality theorem should be considered with care, however, as there

are subtle differences in the static [67, 68] and dynamic [69] properties of ideal

and real polymers..
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Figure 6. (a) Forces acting on the center of mass of the polymers perpendicular to the film surface, Fz(z), as functions of z. Data shown for a
film with thickness H ≈ 8 Rg,b. The blue curve corresponds to the net force in the MR simulation, while the red curve shows the net force
using the CG potential. The green and orange curves show the two- and three-body contributions, U2b

0 and USW
∆0 , respectively. The shaded

regions correspond to the measurement uncertainty determined from the standard error of the mean. (b) Angular part fSW(θIJK ) of U
SW
∆0 for

films with different thicknesses H as indicated and droplet with radius R ≈ 6 Rg,b.

melt, i.e., Rg,0 ≈ 1.5 σ vs Rg,b ≈ 2.2 σ. Once two (or more)

of these globules approach each other in the MR simulations,

they coalesce into a small polymer droplet that remains stable

over the investigated simulation time. However, simulations

containing many CG polymers interacting only through U2b
0

behave in a nonphysical manner: due to the strong attraction

for r � 5 σ and the lack of repulsive excluded volume inter-

actions at short distances, the CG polymers merge into a sin-

gle small aggregate, with a diameter that even decreases with

increasing aggregation number. Alternatively, one could try to

parameterize the pair potential at theΘ-temperature,where the

solvent quality is exactly poor enough to cancel the polymer-

swelling due to excluded volume effects, so that the polymer

scales like an ideal chain. However, the resulting pair poten-

tial between two isolated polymers will be zero (apart from

statistical fluctuations), leading to incorrect thermodynamic

properties in the bulk and confined systems.

3.2. Three-body SW interactions

We determined the SW three-body potentials for the three

different film systems, as well as for the droplet with radius

R ≈ 6 Rg,b. For all investigated systems, the forces of the

reference systems, fMR, were reproduced most faithfully

when the residual forces ∆f were fitted using U2b
0 with a

cutoff distance of rSWc = 10σ. The dependence on η was

weak and we chose η = σ (see the supporting information

(https://stacks.iop.org/JPCM/33/254002/mmedia) for a com-

parison of all different parameter combinations, as well as the

results when fitting to the residual forces using U2b
b ).

Figure 6(a) shows the average force on the CG polymers

perpendicular to the film surface, Fz(z), in the film with H ≈
8 Rg,b, where measurements were taken every 100 τ . (The
results for the other systems are qualitatively similar and are

included in the supporting information.) In the MR simu-

lations, the average net force on the center of mass of the

polymers vanishes in the central bulk-like region of the film,

|z| < 6 σ due to the film’s symmetry along the z-axis. Fur-

ther away from the film center, the net force on the polymers

points inwards with its magnitude increasing the further the

chain is located away from the film center. This net attraction

reflects the cohesive forces between the monomers in the MR

simulations.

Using the particle positions from the MR trajectories (see

section 2.2.2 for details), we computed the force profiles in the

CG model and show the resulting profiles also in figure 6(a).

The resulting net force has a similar shape as the reference

force, although the flat plateau in the film center is replaced

by a weak oscillation. The contribution from the two-body

potential U2b
0 leads to a strong net attraction between the

CG polymers, which is especially pronounced near the film

surfaces because of the inhomogeneous polymer density dis-

tribution (see figure 2). The pairwise attraction in the CG

model extends deep into the bulk region of the film, which

is (partially) compensated by the repulsive three-body SW

interactions. It should be noted, that these force profiles have

been created using the CG model in trajectories from the

MR reference simulations, and not from dedicated simulations

using the CG model. Thus, the good agreement of the force

profiles shown in figure 6(a) does not guarantee the stability

of the films and droplets in the CG representation, which we

will test in section 3.4.

In figure 6(b), we plot the angular part of the SW poten-

tial fSW(θIJK) for the three different films as well as for the

droplet with radius R ≈ 6 Rg,b. The fitted functions fSW(θIJK)
have similar shapes in all investigated cases, indicating a good

transferability of the three-body potential. As the two expo-

nential terms of the SW potential are strictly positive (see

equation (6)), a positive (negative) sign of fSW(θ) results in
a net repulsion (attraction) between the central CG particle I

of a triplet configuration and the two CG particles J andK. The

SW potential is purely repulsive for small angles θIJK < 30◦,

where the three CG polymers I, J, andK are lined upwith J at a

smaller distance and K at a larger distance behind chain J (see

figure 6(c)). For larger angles θIJK > 30◦, fSW(θ) oscillates
around zero with a rather small amplitude.

3.3. Local density-dependent potentials

Using U2b
0 as the two-body potential between the CG poly-

mers, we determined ULDP
0 for all films and droplets via

7
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Figure 7. (a) Probability density function of the local density, P(ϕ), in the MR (symbols) and CG systems (lines). Results for thin films
(H ≈ 8 Rg,b) are shown in blue, while results for droplets (R ≈ 4 Rg,b) are shown in red. (b) Embedding functions, G(ϕ), for all investigated
systems. The dashed line indicates G ∝ φ, while the inset shows the second derivative d2G/dϕ2. (c) Two-body interactions parameterized in
the bulk simulations, U2b

b , and effective two-body potential for the CG simulations with an LDP in the bulk region, U2b
0 + ULDP,2b.

REM, as described in section 2.2.3. To verify that the coarse-

graining procedure converged, we computed the probabil-

ity density function of the local density, P(ϕ), in both the

mapped MR reference simulations as well as in the CG

simulations. Figure 7(a) shows the corresponding results for

the film with thickness H ≈ 8 Rg,b and the droplet with

radius R ≈ 4 Rg,b. The data for the CG and MR simula-

tions are in perfect agreement, which indicates that the LDPs

have been parameterized accurately. Small ϕ values corre-

spond to polymers located near the polymer–solvent inter-

face, while large ϕ values are associated with polymers in the

central bulk-like region of the systems. All P(ϕ) have a

maximum near ϕ ≈ 15, which indicates that there are more

polymers in the bulk-like region than at the surfaces. This

maximum becomes more pronounced as the film thickness

H (droplet radius R) increases, because the surface-to-volume

ratio decreases as 2/H (3/R). Note also, that a droplet with

diameter 2R = H has a larger surface-to-volume ratio than

a film with the same thickness, which is reflected by the

larger P(ϕ) values at small ϕ for droplets compared to films

(see figure 7(a)).

Figure 7(b) shows the fitted embedding functions G(ϕ) for
all CG systems, which look nearly identical except for a slight

vertical shift in the region ϕ�4. This good agreement indi-

cates that the obtained LDPs are transferable across the dif-

ferent systems, that is, the embedding function G(ϕ) param-

eterized for a small droplet is also applicable to a thick film.

G(ϕ) increases linearly with ϕ for 5 � ϕ � 22, which corre-

sponds to the range of local densities typically observed in the

films and droplets (see figure 7(a)). For such linear embedding

functions G(ϕ) = kϕ+ C, the potential energy of particle I

due to the LDP can be written as:

ULDP
I = C + kϕI = C +

∑

I 	=J

kω(rIJ) = C +
∑

I 	=J

ULDP,2b(rIJ).

(16)

Hence, in this case, the LDP behaves like an additive pair

potentialULDP,2b(r), which restores the excluded volume inter-

actions between the CG polymers. Figure 7(c) shows the

resulting effective pair interaction between CG particles in

the bulk-like region of the films and droplets, U2b
0 + ULDP,2b,

which is repulsive at short distances to prevent the CG parti-

cles from collapsing onto each other, and has a minimum at

r ≈ Rg,b = 2.2 σ to achieve the desired inter-particle spacing

in the bulk-like region.Outside the density region 5 � ϕ � 22,

the derivative d2G/dϕ2 is nonzero (see inset of figure 7(b)), so

that many-body effects become relevant. For smaller ϕ < 5,

the derivative d2G/dϕ2 is negative, so that ULDP
0 becomes

less repulsive as the local density increases. In contrast,

d2G/dϕ2 > 0 forϕ > 22, which ensures the incompressibility

of the polymer film.

To assess the computational performance of the CG model,

we performed bulk simulations with Np = 2000 polymers in a

cubic box with edge length L = 35.15 σ. Here, we found that
the CG simulations using only the two-body interactions U2b

b

achieved about 40 times more timesteps per second than the

MR simulations, while the CG simulations with both U2b
0 and

ULDP
0 achieved about 10 times more timesteps per second than

the MR simulations. The actual speedup with respect to the

8
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Figure 8. Snapshots of the CG simulations of the films with thickness H ≈ 8 Rg,b. (a) Starting configuration. (b) and (c) CG simulations
with U2b

0 and USW
∆0 at t = 2 τ and 4 τ , respectively. (d) and (e) CG simulations with U2b

0 and ULDP
0 at t = 2τ and 40 000 τ , respectively.

physical timescales is likely even higher due to the accelerated

dynamics in the soft CG models.

3.4. Stability of simulations

To investigate whether the CG representations using the SW

potential or the LDP are able to reproduce stable films and

droplets, we performed MD simulations using the CG models

starting from the final snapshots of the MR reference simula-

tions. Figure 8 shows typical snapshots of the CG simulations

of the films with thickness H ≈ 8 Rg,b at different simulation

times. The starting configuration is shown in figure 8(a), while

the results from the runs with the SW potential and LDP are

shown in figures 8(b), (c) and (d), (e), respectively.

The films in the CG simulations with U2b
0 and USW

∆0 start to

become unstable already after about 2 τ , as the CG polymers

collapse into small spherical aggregates, which are stabilized

by a long range repulsion between them. The inability of this

combination of two- and three-body interactions to reproduce

the MR simulations even qualitatively stems likely from the

restricted functional form of USW
∆0 . The residual force fit of the

SW potential (see section 2.2.2) most probably only captures

a local minimum of the potential of mean force, whereas the

global minimum of the fitted CG model corresponds to this

collapsed state. This transition can be better understood by

considering the strong attraction of U2b
0 at short distances (see

figure 5), whereas the three-body contribution USW
∆0 is repul-

sive only for small angles θIJK < 30◦, where three CG beads

are lined up as shown in figure 6(b). Thus, small deviations

in θIJK are already sufficient to overcome the repulsive bar-

rier between neighboring particles. This interpretation is cor-

roborated by the distribution of angles θIJK in the collapsed

droplets, where we find almost no triplets with angles in the

range of θIJK < 30◦. CG simulations with U2b
b and USW

∆b do

not reproduce stable films or droplets either, as in these cases

the (attractive) three-body contributionUSW
∆b is not sufficient to

compensate the repulsive pair potentialU2b
b (see the supporting

information for the fitting results of USW
∆b ). In addition, includ-

ing SW interactions with a relatively large cutoff (rSWc = 10σ)
significantly slows down the CG simulations due to the large

number of triplets included into the force calculation. In fact,

the CG simulations became less efficient than the original MR

ones.

In contrast, the CG simulations with the pair potential U2b
0

and LDP ULDP
0 lead to stable film and droplet configurations,

even after long simulation times (see figure 8). (Note that simu-

lations using the effective pair interactionsU2b
0 andULDP,2b, see

section 3.3, exhibit a similar instability as the simulations with

U2b
0 and USW

∆0 .) To investigate the resulting configurations in

more detail, we computed the density profiles along the z-axis

for the films and in the radial direction for the droplets. The

corresponding results for the film with thickness H ≈ 8 Rg,b

and the droplet with radius R ≈ 4 Rg,b are plotted in figure 9.

Again themeasurement uncertainties of the density profiles are

estimated from the standard error of the mean between ten sub-

divided blocks of the data. Overall, the density profiles in the

CG simulations are reasonably close to the ones from the MR

simulations, with relative deviations ofH and R below 4%, and

similar polymer densities in the central region of the films and

droplets. However, the polymer–solvent interfaces are slightly

broader in the CG simulations, which is also reflected by the

smaller surface tension measured in the CG simulations, that

is γ = 0.31± 0.01kBT/σ
2 vs γ = 1.42kBT/σ

2 for the planar

films. Further, the peaks in the density profiles near the poly-

mer–solvent interfaces are slightlymore pronounced andmore

narrow in the MR simulations compared to the CG simula-

tions. This difference can be understood if one considers the

oblate ellipsoidal shape of the polymers at the interfaces in

the MR simulations (see figure 2(b)). This shape anisotropy

9
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Figure 9. Number density profiles of polymer centers of mass of the mapped MR reference (ρp) and CG simulations (ρCGp ) for (a) a film
with thickness H ≈ 8 Rg,b, and (b) a droplet with radius R ≈ 4 Rg,b. The horizontal dashed line indicates the polymer number density in the
bulk system. In both panels, the shaded regions correspond to the measurement uncertainty determined from the standard error of the mean.

Figure 10. Force profiles for (a) a film with thickness H ≈ 8 Rg,b and (b) a droplet with radius R ≈ 4 Rg,b as functions of z or r, respectively.
The blue curve corresponds to the net force in the MR simulation, while the red curve shows the net force in the CG simulations. The green
and orange curves show the two-body and LDP contributions, U2b

0 and ULDP
0 , respectively. In both panels, the shaded regions correspond to

the measurement uncertainty determined from the standard error of the mean.

near the polymer–solvent interface can, however, not be cap-

tured by our CG model, where the polymers are modeled as

soft spheres.

In addition, we computed the force profiles along the z-

axis in the films and in the radial direction r for the droplets

(see figure 10). The force profiles were calculated as the mean

forces of particles at the given z or r position with data taken

every 100 τ . In both the MR and CG simulations, the net force

is essentially zero in the central region of the film and droplet,

due to the symmetry of the systems. Polymers near the sur-

face of the film/droplet experience attractive forces toward the

center of the film/droplet. These cohesive forces are stronger

and act on a much narrower region in the MR simulations

compared to the CG simulations. If one decomposes the net

force into the contributions from the two- and many-body

interactions, one sees that U2b
0 and ULDP

0 have opposite signs

and are each significantly larger than the resulting net force.

Both forces also extend much further into the central region

of the films and droplets than expected from the width of

the bumps at the extremities of the force profiles. Evidently,

the stability of the films and droplets is the result of a del-

icate balance between two- and many-body interactions in

our CG model.

4. Conclusions

We developed CG models of homopolymers, where each

polymer was represented by a single (soft) spherical parti-

cle and the solvent was included implicitly. We focused on

simulations of thin films and droplets with strong density

inhomogeneities near the polymer–solvent interfaces. In CG

simulations where the polymers interacted only through two-

body potentials, the films and droplets either dissolved or col-

lapsed into small aggregates, depending on whether the effec-

tive polymer–polymer interactions were parameterized in ref-

erence simulations in the bulk or at infinite dilution. These

CG representations failed at capturing (even qualitatively) the

main physical characteristics of the reference systems, because

they did not correctly reproduce the cohesive forces and the

compressibility of the polymers, respectively.

To address these inherent issues, we supplemented the

two-body potentials by additional three-body or many-body

interactions, which were parameterized in the inhomogeneous

systems. The three-body interactions were represented by a

Stillinger–Weber potential which was fitted to the residual

forces of the MR reference simulations. Many-body interac-

tions were included in a mean-field way via local density-
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dependent interactions, which were optimized using the REM

technique. The CG models with three-body interactions failed

at maintaining stable polymer films or droplets, and the CG

particles collapsed into small spherical aggregates instead.

In contrast, the CG simulations with local density-dependent

interactions reproduced stable films and droplets with lin-

ear dimensions close to the reference simulations, except

that the polymer–solvent interfaces were slightly sharper and

the accompanied surface tension was higher in the refer-

ence simulations. We attributed these differences to the defor-

mation of polymers near the interfaces, which could not

be resolved in the CG representation, where the polymers

were mapped to spherical beads. In future work, we plan to

enhance our model to capture such effects. Further, we want

to develop analytic expressions for the pair- and many-body

interactions to avoid (or at least minimize) running miscro-

scopically resolved reference simulations for parameterizing

the CG model.
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Plecháč P and Harmandaris V 2016 Parametrizing coarse
grained models for molecular systems at equilibrium Eur.
Phys. J.: Spec. Top. 225 1347–72

[24] Izvekov S and Voth G A 2005 Multiscale coarse graining of
liquid-state systems J. Chem. Phys. 123 134105

11



J. Phys.: Condens. Matter 33 (2021) 254002 F Berressem et al

[25] Noid W G, Liu P, Wang Y, Chu J-W, Ayton G S, Izvekov S,
Andersen H C and Voth G A 2008 The multiscale coarse-
graining method. II. Numerical implementation for coarse-
grained molecular models J. Chem. Phys. 128 244115

[26] Lyubartsev A P and Laaksonen A 1995 Calculation of effec-
tive interaction potentials from radial distribution functions:
a reverse Monte Carlo approach Phys. Rev. E 52 3730

[27] Tóth G 2007 Effective potentials from complex simulations: a
potential-matching algorithm and remarks on coarse-grained
potentials J. Phys.: Condens. Matter 19 335222

[28] Henderson R L 1974 A uniqueness theorem for fluid pair corre-
lation functions Phys. Lett. A 49 197–8

[29] Scherer C and Andrienko D 2018 Understanding three-body
contributions to coarse-grained force fields Phys. Chem.
Chem. Phys. 20 22387–94

[30] Louis A A 2002 Beware of density dependent pair potentials J.
Phys.: Condens. Matter 14 9187–206

[31] Peter C and Kremer K 2009 Multiscale simulation of soft matter
systems - from the atomistic to the coarse-grained level and
back Soft Matter 5 4357–66

[32] Bereau T, Bennett W F D, Pfaendtner J, Deserno M and
Karttunen M 2015 Folding and insertion thermodynamics
of the transmembrane WALP peptide J. Chem. Phys. 143
243127
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